Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words (10 page)

BOOK: Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words
9.73Mb size Format: txt, pdf, ePub
ads

The escape from this unsatisfactory situation by the electric field theory of Faraday and Maxwell represents probably the most profound transformation which has been experienced by the foundations of physics since Newton’s time. Again, it has been a step in the direction of constructive speculation which has increased the distance between the foundation of the theory and what can be experienced by means of our five senses. The existence of the field manifests itself, indeed, only when electrically charged bodies are introduced into it. The differential equations of Maxwell connect the spacial and temporal differential coefficients of the electric and magnetic fields. The electric masses are nothing more than places of non-disappearing divergency of the electric field. Light waves appear as undulatory electromagnetic field processes in space.

To be sure, Maxwell still tried to interpret his field theory mechanically by means of mechanical ether models. But these attempts receded gradually to the background following the representation—purged of any unnecessary additions—by Heinrich Hertz, so that, in this theory the field finally took the fundamental position which had been occupied in Newton’s mechanics by the material points. At first, however, this applies only for electromagnetic fields in empty space.

In its initial stage the theory was yet quite unsatisfactory for the interior of matter, because there, two electric vectors had to be introduced, which were connected by relations dependent on the nature of the medium, these relations being inaccessible to any theoretical analysis. An analogous situation arose in connection with the magnetic field, as well as in the relation between electric current density and the field.

Here H. A. Lorentz found an escape which showed, at the same time, the way to an electrodynamic theory of bodies in motion, a theory which was more or less free of arbitrary assumption. His theory was built on the following fundamental hypothesis:

Everywhere (including the interior of ponderable bodies) the seat of the field is the empty space. The participation of matter in electromagnetic phenomena has its origin only in the fact that the elementary particles of matter carry unalterable electric charges, and, on this account are subject on the one hand to the actions of ponderomotive forces and on the other hand possess the property of generating a field. The elementary particles obey Newton’s law of motion for the material point.

This is the basis on which H. A. Lorentz obtained his synthesis of Newton’s mechanics and Maxwell’s field theory. The weakness of this theory lies in the fact that it tried to determine the phenomena by a combination of partial differential equations (Maxwell’s field equations for empty space) and total differential equations (equations of motion of points), which procedure was obviously unnatural. The unsatisfactory part of the theory showed up externally by the necessity of assuming finite dimensions for the particles in order to prevent the electromagnetic field existing at their surfaces from becoming infinitely great. The theory failed moreover to give any explanation concerning the tremendous forces which hold the electric charges on the individual particles. H. A. Lorentz accepted these weaknesses of his theory, which were well known to him, in order to explain the phenomena correctly at least as regards their general lines.

Furthermore, there was one consideration which reached beyond the frame of Lorentz’s theory. In the environment of an electrically charged body there is a magnetic field which furnishes an (apparent) contribution to its inertia. Should it not be possible to explain the
total
inertia of the particles electromagnetically? It is clear that this problem could be worked out satisfactorily only if the particles could be interpreted as regular solutions of the electromagnetic partial differential equations. The Maxwell equations in their original form do not, however, allow such a description of particles, because their corresponding solutions contain a singularity. Theoretical physicists have tried for a long time, therefore, to reach the goal by a modification of Maxwell’s equations. These attempts have, however, not been crowned with success. Thus it happened that the goal of erecting a pure electromagnetic field theory of matter remained unattained for the time being, although in principle no objection could be raised against the possibility of reaching such a goal. The thing which deterred one in any further attempt in this direction was the lack of any systematic method leading to the solution. What appears certain to me, however, is that, in the foundations of any consistent field theory, there shall not be, in addition to the concept of field, any concept concerning particles. The whole theory must be based solely on partia differential equations and their singularity-free solutions.

§ 4. The Theory of Relativity

 

There is no inductive method which could lead to the fundamental concepts of physics. Failure to understand this fact constituted the basic philosophical error of so many investigators of the nineteenth century. It was probably the reason why the molecular theory, and Maxwell’s theory were able to establish themselves only at a relatively late date. Logical thinking is necessarily deductive; it is based upon hypothetical concepts and axioms. How can we hope to choose the latter in such a manner as to justify us in expecting success as a consequence?

The most satisfactory situation is evidently to be found in cases where the new fundamental hypotheses are suggested by the world of experience itself. The hypothesis of the non-existence of perpetual motion as a basis for thermodynamics affords such an example of a fundamental hypothesis suggested by experience; the same thing holds for the principle of inertia of Galileo. In the same category, moreover, we find the fundamental hypotheses of the theory of relativity, which theory has led to an unexpected expansion and broadening of the field theory, and to the superseding of the foundations of classical mechanics.

The successes of the Maxwell-Lorentz theory have given great confidence in the validity of the electromagnetic equations for empty space and hence, in particular, to the statement that light travels “in space” with a certain constant speed c. Is this law of the invariability of light velocity in relation to any desired inertial system valid? If it were not, then one specific inertial system or more accurately, one specific state of motion (of a body of reference), would be distinguished from all others. In opposition to this idea, however, stand all the mechanical and electromagnetic-optical facts of our experience.

For these reasons it was necessary to raise to the degree of a principle, the validity of the law of constancy of light velocity for all inertial systems. From this, it follows that the spacial coordinates
X
1
, X
2
, X
3
,
and the time X
4
, must be transformed according to the “Lorentz-transformation” which is characterized by invariance of the expression

ds
2
= dx
1
2
+ dx
2
2
+ dx
3
2
- dx
4
2

 

(if the unit of time is chosen in such a manner that the speed of light c = 1).

By this procedure time lost its absolute character, and was included with the “spacial” coordinates as of algebraically (nearly) similar character. The absolute character of time and particularly of simultaneity were destroyed, and the four dimensional description became introduced as the only adequate one.

In order to account, also, for the equivalence of all inertial systems with regard to all the phenomena of nature, it is necessary to postulate invariance of all systems of physical equations which express general laws, with regard to the Lorentzian transformation. The elaboration of this requirement forms the content of the special theory of relativity.

This theory is compatible with the equations of Maxwell; but, it is incompatible with the basis of classical mechanics. It is true that the equations of motion of the material point can be modified (and with them the expressions for momentum and kinetic energy of the material point) in such a manner as to satisfy the theory; but, the concept of the force of interaction, and with it the concept of potential energy of a system, lose their basis, because these concepts rest upon the idea of absolute instantaneousness. The field, as determined by differential equations, takes the place of the force.

Since the foregoing theory allows interaction only by fields, it requires a field theory of gravitation. Indeed, it is not difficult to formulate such a theory in which, as in Newton’s theory, the gravitational fields can be reduced to a scalar which is the solution of a partial differential equation. However, the experimental facts expressed in Newton’s theory of gravitation lead in another direction, that of the general theory of relativity.

Classical mechanics contains one point which is unsatisfactory in that, in the fundamentals, the same mass constant is met twice over in two different rôles, namely as “inertial mass” in the law of motion, and as “gravitational mass” in the law of gravitation. As a result of this, the acceleration of a body in a pure gravitational field is independent of its material; or, in a coordinate system of
uniform acceleration
(accelerated in relation to an “inertial system”) the motions take place as they would in a homogeneous gravitational field (in relation to a “motionless” system of coordinates). If one assumes that the equivalence of these two cases is complete, then one attains an adaptation of our theoretical thinking to the fact that the gravitational and inertial masses are identical.

From this it follows that there is no longer any reason for favoring, as a fundamental principle, the “inertial systems”; and, we must admit as equivalent in their own right, also
non-linear
transformations of the coordinates (
x
1
, x
2
, x
3
, x
4
). If we make such a transformation of a system of coordinates of the special theory of relativity, then the metric

ds
2
=dx
1
2
+
dx
2
2
+
dx
3
2
-
dx
4
2

 

goes over to a general (Riemannian) metric of Bane

ds
2
= g
μν
dx
μ
dx
ν
(Summed over μ and ν)

 

where the g
μν
, symmetrical in μ and ν, are certain functions of x
1
… x
4
which describe both the metric property, and the gravitational field in relation to the new system of coordinates.

The foregoing improvement in the interpretation of the mechanical basis must, however, be paid for in that—as becomes evident on closer scrutiny—the new coordinates could no longer be interpreted, as results of measurements by rigid bodies and clocks, as they could in the original system (an inertial system with vanishing gravitational field).

The passage to the general theory of relativity is realized by the assumption that such a representation of the field properties of space already mentioned, by functions
g
μν
(that is to say by a Riemann metric), is also justified in the
general
case in which there is no system of coordinates in relation to which the metric takes the simple quasi-Euclidian form of the special theory of relativity.

Now the coordinates, by themselves, no longer express metric relations, but only the “neighborliness” of the things described, whose coordinates differ but little from one another. All transformations of the coordinates have to be admitted so long as these transformations are free from singularities. Only such equations as are covariant in relation to arbitrary transformations in this sense have meaning as expressions of general laws of nature (postulate of general covariancy).

The first aim of the general theory of relativity was a preliminary statement which, by giving up the requirement of constituting a closed thing in itself, could be connected in as simple a manner as possible with the “facts directly observed.” Newton’s gravitational theory gave an example, by restricting itself to the pure mechanics of gravitation. This preliminary statement may be characterized as follows:

(1) The concept of the material point and of its mass is retained. A law of motion is given for it, this law of motion being the translation of the law of inertia into the language of the general theory of relativity. This law is a system of total differential equations, the system characteristic of the geodetic line.

(2) In place of Newton’s law of interaction by gravitation, we shall find the system of the simplest generally covariant differential equations which can be set up for the g
μν
,-tensor. It is formed by equating to zero the once contracted Riemannian curvature tensor, (R
μν
= 0).

This formulation permits the treatment of the problem of the planets. More accurately speaking, it allows the treatment of the problem of motion of material points of practically negligible mass in the gravitational field produced by a material point which itself is supposed to have no motion (central symmetry). It does not take into account the reaction of the “moved” material points on the gravitational field, nor does it consider how the central mass produces this gravitational field.

Analogy with classical mechanics shows that the following is a way to complete the theory. One sets up as field equation

BOOK: Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words
9.73Mb size Format: txt, pdf, ePub
ads

Other books

Bitch Factor by Chris Rogers
Skipping Christmas by John Grisham
Beware Beware by Steph Cha
Outlaw Marriages by Rodger Streitmatter
Get a Clue by Jill Shalvis
Lakewood Memorial by Robert R. Best
100% Pure Cowboy by Cathleen Galitz