Like many figures in the past who have proposed important advances in knowledge and new ways of thinking about ancient history, he seemed to have ruffled many academic feathers in his time. As one writer on Scaliger puts it, he wanted to “revolutionize perceived ideas of ancient chronologyâto show that ancient history is not confined to that of the Greeks and Romans, but also comprises that of the Persians, the Babylonians and the
Egyptians . . .”
4
He wanted to push beyond the academically popular Eurocentricnotions of Greeks and Romans being the source of all important modern knowledge in order to include more ancient roots, including sources from Egypt. Scaliger believed that much of the astronomical and calendrical knowledge that we tend to ascribe to discovery by ancient Greeks actually came from earlier Babylonian, Akkadian, and Egyptian sources that were transcribed, translated, and studied by Greek conquerors. That debateârediscovery versus discoveryâcontinues among scholars. As we will see later in this book, the earliest roots of discovery of that knowledge may keep moving back in time, past those pre-Greek sources toward even the people who built Nabta Playa. It is a curiosity that the dates of the Nabta Playa Calendar Circle turn out to be just a bit earlier than Julian date Zero.
CALENDAR CIRCLE RESOLVED
In order to accurately calculate ancient star locations, we were able to employ some methods related to our own doctoral dissertation work using computers to simulate certain planetary astrophysics
motions.
5
We wrote a brief computer program to calculate very ancient star locations using the generally accepted mathematical equations for the long-term motions of
Earth.
6
We then tested our method against the SkyMapPro astronomy software as far back in time as it could go in order to verify the accuracy of this method, which turned out to be very precise. Satisfied that we were well within the accuracy required for our purpose, we then examined the angle of the Orion's belt asterism with the meridian as seen from the latitude of Nabta Playa in epoch 4800 BCE, and we quickly realized that we had hit the bulls-eye with our hypothesis.
The natural place to stand when using the Calendar Circle as an observatory or observing diagram is at the north gate looking southâthat is, toward the south meridian of the sky. By mentally registering the image of the nearest set of three upright stones inside the Calendar Circle and then looking up at the sky, the observer in circa 4800 BCE would have seen the three stars of Orion's belt in almost exactly the same configuration. In other words, the three upright stones on the ground are a representation of the three stars of Orion's belt in the sky.
According to our calculations, the perfect match occurs in 4940 BCE, which is well within the margin of error obtained by the CPE's radiocarbon dating. This sky-ground correlation is unlikely to be a coincidence. What additionally supports this conclusion is the fact that the distanceâthat is, altitudeâof the stars measured from the horizon matches the distance of the stones measured from the north rim of the Calendar Circle.
But there was more: Using our computer program and calculations, we established that in 4940 BCE, Orion's belt could be seen at meridian for approximately six months each year, from summer solstice sunrise to winter solstice sunset. These two extreme points in the sun's annual cycle were in fact marked by the Calendar Circle with the line passing through the northeast gate and southwest gate, with one direction pointing northeastward toward the summer solstice sunrise and the opposite direction pointing southwestward toward the winter solstice sunset. To put it more simply, the set of gates of the Calendar Circle, as well as the set of upright stones inside it, worked together to delineate the annual cycle of Orion's belt around 4940 BCE. The ancient astronomer-priests had designed an extremely clever and very simple device to track the cycle of this important stellar asterism throughout the year. We also noted that although 4940 BCE was the best sky-ground fit between the stones and the stars, a similar fit was visible from about 6400 BCE to 4800 BCE.
*11
In practice, then, the Calendar Circle could have been operational for this span of time.
Figure 4.2. Orion's belt matching a diagram of the central stones of the Calendar Circle in 4940 BCE.
Figure 4.3. Diagram of Orion's belt matching Calender Circle stones at altitude, azimuth, and date.
We can note that we have now completed only half of our solution to the Calendar Circle puzzle: we have identified the function of one of the sets of three upright stones. Next, we turned our attention to the other set, which was placed closer to the southern rim of the Calendar Circle. Now that it was made clear to us that Orion's belt was the key to this prehistoric machine, we could not help noticing that the stars that make up the head and shoulders of the human figure of Orion can also be correlated to these three stones, but at another, more ancient time than 4940 BCE. We calculated that the best fit for the stars of Orion's head and shoulders was in 16,500 BCE (see p. 106). What made this fit an unlikely coincidence was also the fact the angle of the shoulder stars reached their maximum point during the autumnal equinox in the same epoch, and furthermore, in this interpretation, the brightest star in Orion, Betelgeuse, matched the position of the largest stone. Again, the distance (altitude) of these stars as measured from the horizon matched the distance of the corresponding stones measured from the rim of the Calendar Circle.
If our conclusions are correct, then the Calendar Circle becomes far more than a snapshot of a single observation of Orion in the night sky. Instead, it is an elegant and profound device to show the change caused by precession on the stars of Orion over vast periods of time. In other words, the Calendar Circle becomes a teaching instrument that demonstrates the precession of the stars. We are not proposing that the Calendar Circle was constructed eighteen thousand years ago
*12
but rather that it commemorates two important dates in the precession cycle of Orionâ4900 BCE and 16,500 BCEâwith the former date being the actual date of its construction and use as indicated by the radiocarbon dating and the latter date being some sort of memorial of an important event, perhaps a beginning in the history of those sub-Saharan herders who came to Nabta Playa in prehistoric times. In additon, the two dates bracket symbolically the two sides of the whole twenty-six-thousand-year precession cycle.
Figure 4.4. Orion's head and shoulders matching the Calender Circle stones at altitude, azimuth, and date
This, of course, presupposes an ability to predict the effect of precession on the stars, namely the cyclical changes in angular tilt and altitude of the constellations over the centuries and millennia. The usual opposition to this is the modern belief that ancient cultures were too primitive and did not have the knowledge or ability to accomplish these predictions. In fact, however, predicting the effects of precessionâeven without telescopes and sophisticated mathematical knowledgeâis not as difficult as it seems to be. This is because the apparent motion of precession is essentially the same as the yearly apparent motion of the sun across the skyâexcept not in one year but over twenty-six thousand years. An intelligent mind of either today or thousands of years ago that was attuned to careful observation of the changes in the sky and privy to records kept over many generations need only have made a conceptual link in order to create such a device as the Calendar Circle at Nabta Playa and enable it to work with the yearly cycle as well as the precession cycle.
In other words, there are essentially two ways to grasp the effects of precession on constellations: (1) adding together incremental measures over many years and building up a mathematical model for how the sky moves gradually (as it is generally believed the ancient Greeks did), or (2) making a sort of vision-logic mental leap that suddenly grasps the geometric shifting of the whole cycle. Of course, such a conceptual mental leap required a particularly subtle and astute mind, but the Neolithic human's brain was perfectly able to perform such an intellectual task. Albeit, the design of the Calendar Circle involved a stroke of geniusâindeed, probably many such strokes over many generationsâbut once constructed, the Calendar Circle was so user-friendly that all those who chanced upon it could easily have realized its meaning, especially those who had been avidly observing and studying the night sky, as did the ancient dwellers of the Sahara. In addition, it is likely that as part of the whole ceremonial complex at Nabta Playa, the Calendar Circle was understood and used by generations of astronomer-priests not merely in isolation, but as part of a broader context of the other structures in the area. We can see that some of the stones, especially those from the north gate, are composed of finely worked and shaped hard stone, which further indicates a refined sense of design and significant effort on the part of the Calendar Circle builders. We can discern in the Calendar Circle the product of minds that were keenly attuned to the subtleties of annual cycles and the long-term cycles of the heavens, and to the ability to represent such awareness elegantly in a stone diagram. Indeed, after people today see animated graphics of how the Calendar Circle works, they immediately understand and appreciate the plausibility of these conclusions. We have presented similar graphic
animation
7
at meetings of professional scholars in Atlanta,
Georgia,
8
and Rhodes,
Greece,
9
in 2004, as well as at meetings and public conferences in San Diego, California, in 2007; in Dubai, UAE, in 2008; and in Rome, Italy, in 2009âand the audiences immediately grasped how and why the Calendar Circle was used by the ancients. Regarding the scholars, however, although they easily grasp the idea, their academic conditioning often blocks them from changing their own preconceived beliefs about the Nabta Playa ancient people. Others who are more skeptical suggest that the data of field archaeologists, especially having to do with the astronomy that matches the stones, may have been in error.
*13
We, however, have double-checked the source of the Calendar Circle data and have ourselves examined the remains of the circle. Further, with regard to the nearby megalithic structures, we also have undertaken measurements and have relied on both the field maps provided by archaeologists as well as very accurate satellite photography of Nabta Playa. What clinches our interpretation and conclusions that the ancient Nabta Playa astronomer-priests paid significant attention to Orion's belt as part of a unified system of tracking the changes in the sky is the fact that similar astronomical activities are also attributed to the other megalithic structures in the ceremonial complex.