Read Breve historia de la química Online

Authors: Isaac Asimov

Tags: #Científico

Breve historia de la química (29 page)

BOOK: Breve historia de la química
7.46Mb size Format: txt, pdf, ePub
ads

La magnitud de la desviación de iones de carga idéntica por un campo magnético depende de la masa del ion; cuanto mayor es ésta, menos se desvía. Los resultados obtenidos por Thomson y Aston parecían indicar que existían dos tipos de átomos de neón, uno con más masa que el otro. Uno de ellos tenía un
número músico
de 20, y el otro de 22. Como el neón-20 era diez veces más abundante que el neón-22, a juzgar por las respectivas oscuridades de las manchas (en los últimos años se localizaron también muy pequeñas cantidades de neón-21) parecía razonable que el peso atómico del neón fuese aproximadamente 20,2.

En otras palabras, los átomos individuales tenían masas que eran un múltiplo entero de la del átomo de hidrógeno
[33]
, pero un elemento determinado, al estar formado por átomos de diferentes masas, tendría un peso atómico que sería un promedio del peso de dichos enteros, y en consecuencia no tenía que ser necesariamente un número entero.

El promedio del peso de los isótopos de un átomo determinado puede ser mayor, en algunos casos, que el promedio del peso de un átomo con mayor número atómico.

Por ejemplo, el teluro, con un número atómico de 52, posee siete isótopos. De éstos, los dos isótopos de más masa, teluro-126 y teluro-128, son los más abundantes. Por tanto, el peso atómico del teluro se convierte en 127,6. El yodo tiene el número atómico inmediatamente superior, el 53, pero está formado por yodo-127 solamente, y por tanto su peso atómico es 127. Cuando Mendeleiev colocó el yodo después del teluro en su tabla periódica, invirtiendo el orden correspondiente al peso atómico, sin saberlo se estaba guiando, en su lugar, por el número atómico; y era la forma correcta de hacerlo.

Veamos otro ejemplo. El potasio (número atómico 19) está formado por tres isótopos, el potasio-39, el potasio-40 y el potasio-41, pero el isótopo más ligero, potasio-39, es con mucho el más abundante. En consecuencia, el peso atómico del potasio es 39,1. El argón tiene un número atómico inferior (18) y está formado también de tres isótopos, argón-36, argón-38 y argón-40. Pero en este caso es el isótopo de más masa, argón-40, el que más abunda. Así, pues, el peso atómico del argón es aproximadamente de 40. Cuando Ramsay colocó el argón antes del potasio y no después (véase pág. 150), contradiciendo a los pesos atómicos, también sin saberlo se estaba guiando por el número atómico, y también estaba actuando correctamente.

El uso del espectrógrafo de masas permitió determinar el peso atómico midiendo de hecho la masa de cada isótopo y la cantidad existente de cada uno de ellos, y tomando luego el promedio. Este método superaba en exactitud a los métodos químicos para la medición del peso atómico.

Los diferentes isótopos de un elemento dado poseen el mismo número atómico pero diferentes números másicos.

Los diferentes isótopos tendrán el mismo número de protones en sus núcleos, pero diferente número de neutrones. Así, el neón-20, neón-21 y neón-22 tienen todos ellos 10 protones en su núcleo, de modo que todos tienen un número atómico de 10, y una disposición electrónica de 2,8. Sin embargo, el neón-20 tiene un núcleo con 10 protones más 10 neturones; el neón-21, uno con 10 protones más 11 neutrones; y el neón-22, uno con 10 protones más 12 neutrones.

La mayoría de los elementos (pero no todos) pueden dividirse de este modo en isótopos. En 1935, el físico canadiense-americano Arthur Jeffrey Dempster (1886-1950) halló, por ejemplo, que el uranio, tal como se presentaba en la naturaleza, era una mezcla de dos isótopos, a pesar de que su peso atómico (238,07) se aproximaba a un número entero. Se debía precisamente a que uno de los isótopos existía en una proporción mucho mayor. Un 99,3 por 100 de los átomos de uranio tenían núcleos formados por 92 protones y 146 neutrones, o lo que es lo mismo, un número másico total de 238. Se trataba de los átomos de uranio-238. El 0,7 por 100 restante, en cambio, poseía tres neutrones menos, y constituían los átomos de uranio-235.

Puesto que las propiedades radiactivas dependen de la constitución de los núcleos atómicos, y no de la disposición electrónica, los isótopos de un elemento podían ser químicamente semejantes, pero bastante diferentes desde el punto de vista de su radiactividad. Así, mientras que el uranio-238 tenía una vida media de cuatro mil quinientos millones de años, la del uranio-235 era sólo de setecientos millones de años
[34]
. Además, ambos son padres de series radiactivas diferentes.

Existían razones teóricas para suponer que el propio hidrógeno, el elemento más simple, podía estar compuesto de un par de isótopos. Los átomos de hidrógeno ordinarios, con núcleos formados por un solo protón, constituyen el hidrógeno-1. Pero en 1931 el químico americano Harold Clayton Urey (1893-1981) evaporó lentamente cuatro litros de hidrógeno líquido; en el supuesto de que si existía algún isótopo de hidrógeno más pesado, tendría un punto de ebullición más alto, y evaporaría más lentamente, con lo que se acumularía en el residuo.

Efectivamente, en el centímetro cúbico final de hidrógeno, Urey pudo detectar signos inequívocos de la existencia de hidrógeno-2, cuyo núcleo se componía de un protón más un neutrón. El hidrógeno-2 recibió el nombre especial de
deuterio.

Tampoco el oxígeno se libraba. En 1929, el químico americano William Francis Clauque (n. 1895) logró demostrar que el oxígeno estaba formado de tres isótopos. La variedad más abundante, que comprendía cerca del 99,8 por 100 del total de átomos, era el oxígeno-16. Su núcleo contenía 8 protones más 8 neutrones. El resto era casi todo oxígeno-18 (8 protones más 10 neutrones), con un residuo de oxígeno-17 (8 protones más 9 neutrones).

Esto creaba un problema. Ya desde el tiempo de Berzelius, los pesos atómicos se habían basado en la asignación arbitraria de un peso de 16,0000 al átomo de oxígeno (véase pág. 93). Pero el peso atómico del oxígeno podía ser solamente el promedio de peso de los tres isótopos, y la proporción de los isótopos en el oxígeno podía variar ligeramente de unas muestras a otras.

Los físicos procedieron a determinar los pesos atómicos estableciendo el de oxígeno-16 como igual a 16,0000, y esto les proporcionó una serie de valores (el peso
atómico físico)
que eran uniformemente mayores, en muy pequeña cantidad, que los valores que se habían estado utilizando y perfeccionando gradualmente a lo largo del siglo xix (los
pesos atómicos químicos).

Pero en 1961, las organizaciones internacionales, tanto de químicos como de físicos, acordaron adoptar un peso atómico standard, el del carbono-12, como exactamente igual a 12,0000. Este nuevo valor standard era casi exactamente el de los antiguos pesos atómicos químicos, y sin embargo estaba vinculado a un solo isótopo, y no al promedio de varios de ellos.

14. Reacciones nucleares

La nueva transmutación

Habiendo quedado claro que el átomo estaba formado por partículas más pequeñas, que se reordenaban espontáneamente en las transformaciones radiactivas, el siguiente paso parecía prácticamente obligado.

El hombre podía reordenar deliberadamente la estructura atómica de las moléculas en reacciones químicas ordinarias. ¿Por qué no reordenar entonces los protones y neutrones del núcleo atómico en reacciones nucleares?. Ciertamente, los protones y los neutrones se unen por fuerzas mucho mayores que las que unen a los átomos dentro de las moléculas, y los métodos que servían para llevar a cabo las reacciones ordinarias no bastarán para las reacciones nucleares; pero los hombres que habían resuelto el rompecabezas de la radiactividad, se hallaban en el luminoso camino del éxito.

Fue Rutherford quien dio el primer paso. Bombardeó diversos gases con partículas alfa, y halló que en ocasiones una partícula alfa golpeaba el núcleo de un átomo y lo desordenaba (véase fig. 23).

De hecho, Rutherford demostró en 1919 que las partículas alfa podían arrancar protones de los núcleos de nitrógeno, y fusionarse con lo que quedaba. El isótopo más abundante del nitrógeno es el nitrógeno-14, que tiene un núcleo formado por 7 protones y 7 neutrones. Quitemos un protón y añadamos los 2 protones y los 2 neutrones de la partícula alfa, y nos encontraremos con un núcleo que posee 8 protones y 9 neutrones. Se trata del oxígeno-17. La partícula alfa puede considerarse como un helio-4, y el protón como un hidrógeno-1.

Fig. 23. El experimento de Rutherford condujo al concepto de

núcleo, y abrió las puertas a la moderna física nuclear. Las partículas

alfa emitidas por la fuente radiactiva se desviaban al pasar a través de un

pan de oro. El grado de desviación quedaba registrado cuando las

partículas chocaban con la placa fotográfica.

Se deduce entonces que Rutherford llevó triunfalmente a cabo la primera reacción nuclear hecha por el hombre:

Esto es un auténtico ejemplo de transmutación, de conversión de un elemento en otro. En cierto modo era la culminación de los viejos anhelos alquimistas, pero, desde luego, implicaba elementos y técnicas con los cuales los alquimistas no habían ni siquiera soñado.

Durante los cinco años siguientes, Rutherford llevó a cabo muchas otras reacciones nucleares manejando partículas alfa. Lo que podía hacer, no obstante, era limitado, ya que los elementos radiactivos proporcionaban partículas alfa de baja energía. Para conseguir más, se requerían partículas más energéticas.

Los físicos se dedicaron a la tarea de diseñar mecanismos para acelerar las partículas cargadas en un campo eléctrico, obligándolas a moverse cada vez más rápido, y a poseer, por tanto, cada vez más energía. El físico inglés John Douglas Cockcroft (1897-1967) y su colaborador, el físico irlandés Ernest Thomas Sinton Walton (n. 1903), fueron los primeros en diseñar un acelerador capaz de producir partículas lo bastante energéticas como para llevar a cabo una reacción nuclear, lo que consiguieron en 1929. Tres años más tarde, bombardearon átomos de litio con protones acelerados, y produjeron partículas alfa. La reacción nuclear era:

hidrógeno-1 + litio-7 -

helio-4 +
helio-4

En el aparato de Cockcroft-Walton, y en otros que se estaban proyectando, las partículas se aceleraban en línea recta, y era difícil construir aparatos lo bastante largos para producir energías muy altas. En 1930, el físico americano Ernest Orlando Lawrence (1901-58) diseñó un acelerador que obligaba a las partículas a moverse según una espiral que se ampliaba lentamente. Un
ciclotrón
relativamente pequeño de este tipo podía producir partículas energéticas.

El primero y minúsculo ciclotrón de Lawrence fue el antecesor de los enormes instrumentos actuales de media milla de circunferencia, que se han utilizado para tratar de responder a las preguntas fundamentales relativas a la estructura de la materia.

En 1930, el físico inglés Paul Adrien Maurice Dirac (1902) había propuesto razones teóricas para suponer que tanto los protones como los electrones debían poseer auténticos contrarios
(anti-particulas).
El
anti-electrón
debía poseer la masa de un electrón pero estar cargado positivamente, mientras que el
anti-protón
tendría la masa de un protón, pero estaría cargado negativamente.

El anti-electrón fue detectado efectivamente en 1932 por el físico americano Cari David Anderson (n. 1905) en su estudio sobre los rayos cósmicos
[35]
. Cuando las partículas de los rayos cósmicos chocan con los núcleos atómicos en la atmósfera, se producen algunas partículas que giran en un campo magnético exactamente igual que los electrones, pero en sentido contrario. Anderson denominó
positrón
ala partícula de este tipo.

El anti-protón se resistió a ser detectado durante otro cuarto de siglo. Como el anti-protón es 1.836 veces más pesado que el anti-electrón, se requiere 1.836 veces más energía para su formación. Las energías necesarias no se originaron en dispositivos creados por el hombre hasta la década de los 50. Utilizando aceleradores gigantes, el físico italo-americano Emilio Segré (n. 1905-89) y su colaborador el físico americano Owen Chamberlain (n. 1920) lograron producir y detectar el anti-protón en 1955.

Se ha apuntado que muy bien pueden existir átomos en los que los núcleos cargados negativamente, conteniendo anti-protones, estén rodeados por positrones cargados positivamente. Tal
antimateria
no podría existir mucho tiempo sobre la tierra o, quizás, en ninguna parte de nuestra galaxia, ya que, a su contacto ambas, materia y antimateria, serían aniquiladas en una gran explosión de energía. Sin embargo, los astrónomos se preguntan si podrán existir galaxias enteras formadas por antimateria. Si así fuese, serían muy difíciles de detectar.

BOOK: Breve historia de la química
7.46Mb size Format: txt, pdf, ePub
ads

Other books

The Wedding Gift by Cara Connelly
Wilder's Mate by Moira Rogers
Crestmont by Holly Weiss
Siren Song by Stephanie Draven
The Return of Moriarty by John E. Gardner
The Frozen Shroud by Martin Edwards
The King is Dead by Ellery Queen