His Master's Voice (12 page)

Read His Master's Voice Online

Authors: Stanislaw Lem

BOOK: His Master's Voice
12.91Mb size Format: txt, pdf, ePub

The example is primitive, because it assumes that the one who receives the message will know which signs in it carry information and which constitute their unessential background. With the letter from the stars our position was different. The recorded rhythm could have represented, for example, only marks of punctuation, while the actual "letters" or ideograms could have failed completely to affect the surface of the tape's magnetic coating, being impulses to which the machine was not sensitive.

A separate problem is the disparity between the levels of civilization. From the gold death mask of Amenhotep the art historian will read the epoch and its style. From the mask's ornamentation the student of religions will deduce the beliefs of that time. The chemist will be able to show what method was used then to work the gold. The anthropologist will tell whether the specimen of the species from six thousand years ago differs from modern man; and the physician will offer the diagnosis that Amenhotep suffered from a hormonal imbalance, acromegaly, that gave him his deformed jaw. In this way an object sixty centuries old provides us, in modern times, with far more information than its creators possessed—for what did they know of the chemistry of gold, of acromegaly, of cultural styles? If we turn the procedure around in time and send to an Egyptian of the era of Amenhotep a letter written today, he will not understand it, not only because he does not know our language, but also because he has neither the words nor the concepts to set alongside ours.

Thus were the general deliberations on the subject of the "letter from the stars." The information about it was compressed—in keeping with custom—into a sort of standard text and recorded on tape, and was played for the Very Important Persons who came to visit us. Rather than render it in my own words, I quote verbatim:

"The task of His Master's Voice is to study every aspect of and attempt to translate the so-called message from outer space, which is, in all likelihood, a series of signals sent intentionally and with the aid of an artificial-technological device, by a being or beings that belong to some undetermined extraterrestrial civilization. The medium carrying the specific communication is a stream of particles called neutrinos that have zero rest mass and a magnetic moment 1600 times less than the magnetic moment of an electron. Neutrinos are the most penetrating of the elementary particles known to us. Such particles reach Earth from every direction of the sky. Among them one can distinguish particles generated in stars (therefore in the sun as well) through natural processes such as beta decay and other nuclear reactions, and particles produced from collisions between neutrinos and the nuclei of atoms in Earth's atmosphere or in the crust of the globe. The energy of these particles varies from tens of thousands to many billions of electron volts. Shigubov's work has shown the theoretical possibility of building a so-called neutrino laser, or 'naser,' which could emit a monochromatic corpuscular beam. It is possible that the transmitter that sends the signals received on Earth operates on such a principle. Thanks to the work of Hughes, Lascaglia, and Jeffreys, there has been constructed, for the purpose of recording the separate energy levels in a neutrino emission, a device called an inverter or a neutrino transformer, based on the Einschoff Principle ('the pseudo-particle exchange'), which, making use of the Moessbauer-Tong Effect, is able to filter quanta of radiation to an accuracy of 30,000 eV.

"During the lengthy recordings of the low-energy quanta there was discovered, in the band of 57 million eV, a signal of artificial origin, made up of more than two billion units when converted into binary code. The signal is transmitted continuously, without breaks. It has a comparatively broad radiant, covering the entire region of α

"For this artificial signal to be discovered and recorded, the following conditions have to be met: First, the corpuscular stream of neutrinos must be received by an instrument that has a resolution of at least 30,000 eV and is aimed at a radiant in the Canis Minor, with a possible deviation of 1.5 degrees in any direction from the α of that constellation. Second, one must filter out, from the entire neutrino emission of that sector of the sky, the band lying between 56.8 and 57.2 million eV. And third, the reception of the signal must be of a duration greater than 416 hours and 12 minutes, and then the beginning of the next emission must be compared with the beginning of the one preceding. If this is not done, the received signal will give no indication that it is anything other than a normal (natural) noise phenomenon. For a number of reasons, the constellation Canis Minor is a region interesting to neutrino astronomers. The first condition therefore may be met fairly commonly wherever there are such specialists who have at their disposal the right equipment. The selecting of the necessary band, however, has a lower probability, since the emission in that sector possesses 34 maxima in other energies (the number discovered at the present time). The maximum of the 57-million eV band in the spectrum of the entire emission does in fact display a sawtooth peak; that is, it is energetically sharper or better focused than the others, which are created by natural processes, but still it is not that noticeable; the singularity, in practice, will be found only
ex post facto
, i.e., when someone already knows that the signal at band 57 million eV is artificial and consequently directs his attention there.

"Let us assume that out of the world's forty observatories that have the Lascaglia-Jeffreys machine, at least ten are keeping the Canis Minor radiant under constant observation. The chance that one of these will filter for the signal works out to about 1:3 (10:34)—ceteris paribus. But a recording time on the order of 416 hours is considered rather long. One does not come across such recordings more often than once in every nine or ten research projects. Thus one can reasonably make the approximation that the discovery's chance of coming about was roughly 1:30-40, and that it could be repeated, with much the same probability, outside the United States."

I have quoted the whole text because its second part is also of interest. The probabilistic calculation is not offered very seriously; its inclusion was dictated by the policy, a bit cynical, of the directors of the Project. Their idea was to alarm the Very Important Persons, since a 1:30 chance is not what one could call astronomically small, and the Persons, alarmed, could use their influence to support an increase in the funding of the Project. (The greatest expense, apart from the large computers, were the machines for the automated chemical syntheses.)

To begin work on the "letter," one had to take a first step, and that was the worst thing. The tautology of the above sentence is superficial only. In history there have appeared, innumerable times, thinkers who believed that one could actually progress, in knowledge, from zero; they made of the mind a blank page and held that it could be filled with one and only one necessary order. This fiction has been the basis of awesome efforts. Yet such an operation cannot be carried out. It is impossible to commence anything without first making assumptions, and our awareness of this fact in no way diminishes its reality. Those assumptions inhere in the very biology of man, and in the amalgam of civilization which serves as the interface between the organisms and the environment; and this amalgam is permitted because the actions that must be taken in order to survive are not rendered unequivocal by the environment. The environment, rather, leaves the organisms a chink for freedom of choice, a chink spacious enough to include thousands of possible cultures.

At the beginning of the work on the stellar code, the initial assumptions had to be kept to a minimum, but one could not do without them altogether. If they proved false, the work would of necessity be in vain. One such assumption was that the code was binary. This agreed, by and large, with the recorded signal, but our own system of notation also contributed to this formalization. Not satisfied with the signal on the tapes, and physicists examined at length the neutrino emission itself, which was the "original" (the recording being only an image). They decided finally that the code could be considered binary "to a reasonable approximation." There was, in this pronouncement—inescapably—a Q.E.D. peremptoriness. The next problem was to determine to which category of signal the letter belonged.

To the best of our knowledge the letter could be "written" in some declarative-transactional language like our own, operating with units of meaning; or it could be a system of "modeling" signals, such as television; or it could represent a "recipe," that is, a set of instructions necessary for the production of a certain object. The letter, finally, could contain a description of an object—of a particular "thing"—in a code that was "acultural," one that referred only to certain constants in the world of nature, discoverable by physics and mathematical in form. The discreteness of these four categories of possible code is not total. A television image results from the projection of three-dimensional phenomena onto a plane, with a time distribution that conforms to the physiological mechanisms of the human eye and brain. What we see on the screen is not visible to organisms that are otherwise quite advanced on the evolutionary scale. A dog, for example, will not recognize on television (or in a photograph) another dog. In addition, the boundary between the "thing" and the "recipe for the thing" is not sharp. An egg cell is both a thing, as a material object, and the production recipe for the organism that will develop from it. Thus the relation that exists between the carrier of information and the information itself can be multivalent and tangled.

Knowing, then, the flimsiness of our classification schema, but having at our disposal none better, we proceeded to the task of eliminating, one by one, its variants. The easiest to test, relatively, was the "television hypothesis." For a while it enjoyed great success and was considered to be the most economical. In various combinations, then, the signal was fed into a picture tube. Not a hint of an image was obtained that represented anything; on the other hand, the result was not "complete chaos." On the white screen appeared black spots that increased, grew, flowed together, and vanished, and the whole gave the effect of "boiling." When the signal was run through a thousand times slower, the scene resembled colonies of bacteria in stages of expansion, mutual absorption, and collapse. The eye caught a certain rhythm and regularity in the process, though the rhythm and regularity said nothing.

Control experiments were also initiated, in which recordings of natural neutrino noise were fed into the television. What resulted was a formlessness without centers of condensation, a fluttering and flickering that dissolved into a uniform gray. It was possible to argue, of course, that the Senders had a different sort of television from ours—not optical, for example, but olfactory, or olfactory-tactile. Yet even if they were made differently from us, there could be no doubt that they were our superiors in knowledge, and therefore they would have had to realize that the chance of reception ought not to be made dependent on the addressee's physiological similarity to the sender.

The second variant-possibility was thus rejected. Testing the first was doomed to failure, because, as I pointed out, without a dictionary and a grammar it is impossible to crack a truly "foreign" language. So the two others remained. They were treated together, because (again, as I have said) the distinction between "thing" and "process" is relative. To make a very long story short—the Project began from precisely this position, achieved some results, "materializing" a small piece of the "letter" (i.e., successfully translating, as it were, a fragment of it); but then the work came to a standstill.

The task given me was to find out whether the assumption of the letter as a "thing-process" was correct. I could not refer to the results that had been obtained by beginning with the assumption, for that would have constituted a logical error (a vicious circle). It was not out of ill will, then, but precisely to keep me from approaching the problem with preconceptions that at the beginning no achievements were mentioned in my presence. They might have been, in a certain sense, the product of "misunderstandings."

I did not even know if the mathematicians of the Project had already made a stab at the task given me. I assumed that they had. If I knew their failure—I thought—then I could save myself some unnecessary trouble; but Dill, Rappaport, and Baloyne felt that the safest thing was to tell me nothing.

In a word, I was summoned to rescue the honor of the planet. I had to flex my mathematical muscles in earnest—a little nervous, but pleased. The explaining, the conversing, the sacramental entrusting of the recording from the stars took half a day. The "Big Four" escorted me then to the hotel, watching one another to make sure that no one, in my presence, would betray anything that for the time being I was not supposed to know.

6

FROM THE MOMENT
I landed on the roof, through all the meetings and conversations, the feeling never left me that I was playing a scientist in a grade-B movie. The feeling was strengthened by the room—or, rather, suite—in which they put me. I cannot remember ever having at my disposal so many unnecessary things. In the study stood a desk of presidential proportions; opposite it, two television sets and a radio. The armchair had controls for being raised, turned around, and lowered, no doubt so that between bouts of mental struggling one could take a little nap on it. Near it there was a large shape beneath a white cover. At first I took this for some piece of gymnastic equipment or a rocking horse (even that would not have surprised me), but it was a brand-new, very handsome IBM cryotronic calculator, which indeed proved useful to me. Wanting to join man more closely to the machine, the engineers at IBM had him work it also with his feet. Every time I pressed the "clear" pedal I expected, by reflex, to drive into the wall—the pedal was so much like a car accelerator. In the wall cabinet behind the desk I found a dictaphone, a typewriter, and also a small, scrupulously furnished bar.

Other books

Forest & Kingdom Balance by Robert Reed Paul Thomas
This Is the Night by Jonah C. Sirott
Gone by Mallory Kane
A Little Bit Wicked by Robyn Dehart
Demonkeepers by Jessica Andersen
Blood Maidens by Barbara Hambly
Shades of Gray by Norman, Lisanne