Brain size,
219
Briggs, Adrian,
147
(fig.),
171
,
228
,
239
–
242
AAAS conference,
166
comparing Denisova and modern genomes,
246
increasing Neanderthal DNA proportions,
148
increasing sequencing efficiency,
122
Brigham Young University, Utah,
58
–
60
Burbano, Hernan,
147
(fig.)
Bustamante, Carlos,
249
California Polytechnic State
University,
58
Cano, Raul,
58
Carmel mountains, Israel,
197
Cartilage, DNA remains in,
30
,
30
(fig.),
54
–
55
Cavalli-Sforza, Luca,
93
Cave-bear bones,
76
–
78
,
97
,
99
–
101
,
103
–
104
,
109
–
113
ancestral and derived alleles,
176
cognitive development,
207
common ancestor of humans and,
93
(fig.),
169
comparing human genome and chimpanzee genome,
4
comparing Neanderthal, modern human and ape genomes,
182
competition for reproduction,
212
reconstructing the ancestral
genome,
169
reference for Neanderthal genome mapping,
155
–
156
See also
Apes; Gorillas
Chinese genome
comparing, Neanderthal, African, and Chinese genomes,
177
Denisovan SNPs,
244
Neanderthal nucleotide matches,
183
sequencing modern genomes,
185
–
186
,
189
Clean room procedures,
52
–
57
,
87
–
88
,
87
(fig.)
Clegg, J.B.,
55
Cloning
bacterial cloning,
25
,
109
–
111
,
114
–
115
,
121
–
122
,
128
bringing a Neanderthal to life,
252
Cetus Corporation processes,
40
Croatian Neanderthal samples,
78
–
79
independent verification,
14
–
18
Native American remains,
71
reconstruction of Neanderthal mtDNA,
11
(fig.)
transplantation antigens,
24
See also
Polymerase chain reaction
Cold Spring Harbor Laboratory,
37
–
38
,
43
–
44
,
116
,
120
,
219
Common ancestors
Denisova mtDNA data,
229
Denisovans and Neanderthals,
243
–
244
,
247
–
248
fossil data,
95
humans and chimpanzees,
169
–
171
,
182
humans and great apes,
93
(fig.),
94
Mitochondrial Eve,
13
(fig.),
14
–
15
,
88
modern humans and Neanderthals,
72
–
73
,
78
,
91
separation of humans and chimpanzees,
169
–
171
using the chimpanzee as reference for Neanderthal genome mapping,
155
–
156
Wilson’s research,
41
Consensus nucleotide,
10
Conservation genetics,
56
Contamination
as obstacle to Neanderthal genome mapping,
155
–
156
bacterial cloning versus 454 process,
150
–
151
clean room procedures,
52
–
57
,
87
–
88
,
87
(fig.)
collecting El Sidrón bones,
137
Denisova Cave remains,
230
–
231
,
239
importance of eliminating,
15
–
17
,
50
–
51
inconsistencies with human reference genome,
124
–
127
isolating experiments and samples,
52
–
56
isolating nuclear DNA in cave bears and mammoths,
112
–
113
mapping the Neanderthal genome,
156
–
158
Contamination
(continued)
Native American remains,
44
,
67
–
68
nuclear DNA extraction from mammoths,
101
nuclear genome of the Neanderthal,
160
Coprolites.
See
Animal droppings, DNA in
Creationism,
221
Criteria of authenticity,
51
–
52
Croatian Academy of Sciences and Arts,
77
,
130
,
132
–
135
,
138
,
139
(fig.),
179
Dabney, Jesse,
147
(fig.)
Darwin, Charles,
63
Das Altertum
journal,
32
Deamination (of nucleotides),
7
,
154
Denisova Cave remains
comparing Denisova and modern genomes,
244
–
245
comparing Denisova and Neanderthal genomes,
233
,
243
–
244
comparing Neanderthal mtDNA sequences with Denisova sequences,
228
–
231
publishing the findings,
235
–
236
,
245
–
249
sequencing the nuclear genome,
238
–
242
Derevianko, Anatoly,
227
–
228
,
228
(fig.),
231
–
233
,
235
,
238
–
239
,
242
(fig.),
244
,
250
Derived allele,
156
–
158
,
176
,
181
,
243
Diamond, Jared,
43
Dinosaur, DNA extraction from,
58
–
60
,
111
DNA amplification.
See
Amplification of DNA
DNA extraction
cannibalized remains,
132
Denisovan girl,
251
initial studies of ancient materials,
26
–
27
silica extraction method,
55
Solexa technique,
161
See also
Polymerase chain reaction
DNA sequencing
chimpanzee genome,
4
determining human origins,
41
–
43
humans and apes,
94
information derived from,
25
initial results,
1
mapping convergent evolution,
66
Neanderthal genome mapping project,
118
,
122
–
123
preserved Native American skeletons,
43
–
44
pyrosequencing,
107
–
108
,
111
–
115
technical intricacies of DNA retrieval,
45
–
46