Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words (14 page)

BOOK: Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words
11.22Mb size Format: txt, pdf, ePub
ads

Such was the point at which fundamental conceptions had arrived at the turn of the century. Immense progress was made in the theoretical penetration and understanding of whole groups of new phenomena; but the establishment of a unified foundation for physics seemed remote indeed. And this state of things has even been aggravated by subsequent developments. The development during the present century is characterized by two theoretical systems essentially independent of each other: the theory of relativity and the quantum theory. The two systems do not directly contradict each other; but they seem little adapted to fusion into one unified theory. We must briefly discuss the basic idea of these two systems.

The theory of relativity arose out of efforts to improve, with reference to logical economy, the foundation of physics as it existed at the turn of the century. The so-called special or restricted relativity theory is based on the fact that Maxwell’s equations (and thus the law of propagation of light in empty space) are converted into equations of the same form, when they undergo Lorentz transformation. This formal property of the Maxwell equations is supplemented by our fairly secure empirical knowledge that the laws of physics are the same with respect to all inertial systems. This leads to the result that the Lorentz transformation—applied to space and time coordinates—must govern the transition from one inertial system to any other. The content of the restricted relativity theory can accordingly be summarized in one sentence: all natural laws must be so conditioned that they are covariant with respect to Lorentz transformations. From this it follows that the simultaneity of two distant events is not an invariant concept and that the dimensions of rigid bodies and the speed of clocks depend upon their state of motion. A further consequence was a modification of Newton’s law of motion in cases where the speed of a given body was not small compared with the speed of light. There followed also the principle of the equivalence of mass and energy, with the laws of conservation of mass and energy becoming one and the same. Once it was shown that simultaneity was relative and depended on the frame of reference, every possibility of retaining actions-at-a-distance within the foundation of physics disappeared, since that concept presupposed the absolute character of simultaneity (it must be possible to state the location of the two interacting mass points “at the same time”).

The general theory of relativity owes its origin to the attempt to explain a fact known since Galileo’s and Newton’s time but hitherto eluding all theoretical interpretation: the inertia and the weight of a body, in themselves two entirely distinct things, are measured by one and the same constant, the mass. From this correspondence follows that it is impossible to discover by experiment whether a given system of coordinates
is
accelerated, or whether its motion is straight and uniform and the observed effects are due to a gravitational field (this is the equivalence principle of the general relativity theory). It shatters the concepts of the inertial system, as soon as gravitation enters in. It may be remarked here that the inertial system is a weak point of the Galilean-Newtonian mechanics. For there is presupposed a mysterious property of physical space, conditioning the kind of coordination-systems for which the law of inertia and the Newtonian law of motion hold good.

These difficulties can be avoided by the following postulate: natural laws are to be formulated in such a way that their form is identical for coordinate systems of any kind of states of motion. To accomplish this is the task of the general theory of relativity. On the other hand, we deduce from the restricted theory the existence of a Riemannian metric within the time-space continuum, which, according to the equivalence principle, describes both the gravitational field and the metric properties of space. Assuming that the field equations of gravitation are of the second differential order, the field law is clearly determined.

Aside from this result, the theory frees field physics from the disability it suffered from, in common with the Newtonian mechanics, of ascribing to space those independent physical properties which heretofore had been concealed by the use of an inertial system. But it can not be claimed that those parts of the general relativity theory which can to-day be regarded as final have furnished physics with a complete and satisfactory foundation. In the first place, the total field appears in it to be composed of two logically unconnected parts, the gravitational and the electromagnetic. And in the second place, this theory, like the earlier field theories, has not up till now supplied an explanation of the atomistic structure of matter. This failure has probably some connection with the fact that so far it has contributed nothing to the understanding of quantum phenomena. To take in these phenomena, physicists have been driven to the adoption of entirely new methods, the basic characteristics of which we shall now discuss.

In the year nineteen hundred, in the course of a purely theoretic investigation, Max Planck made a very remarkable discovery: the law of radiation of bodies as a function of temperature could not be derived solely from the laws of Maxwellian electrodynamics. To arrive at results consistent with the relevant experiments, radiation of a given frequency had to be treated as though it consisted of energy atoms of the individual energy h.v., where h is Planck’s universal constant. During the years following it was shown that light was everywhere produced and absorbed in such energy quanta. In particular Niels Bohr was able largely to understand the structure of the atom, on the assumption that atoms can have only discrete energy values, and that the discontinuous transitions between them are connected with the emission or absorption of such an energy quantum. This threw some light on the fact that in their gaseous state elements and their compounds radiate and absorb only light of certain sharply defined frequencies. All this was quite inexplicable within the frame of the hitherto existing theories. It was clear that at least in the field of atomistic phenomena the character of everything that happens is determined by discrete states and by apparently discontinuous transitions between them, Planck’s constant h playing a decisive role.

The next step was taken by De Broglie. He asked himself how the discrete states could be understood by the aid of the current concepts, and hit on a parallel with stationary waves, as for instance in the case of the proper frequencies of organ pipes and strings in acoustics. True, wave actions of the kind here required were unknown; but they could be constructed, and their mathematical laws formulated, employing Planck’s constant h. De Broglie conceived an electron revolving about the atomic nucleus as being connected with such a hypothetical wave train, and made intelligible to some extent the discrete character of Bohr’s “permitted” paths by the stationary character of the corresponding waves.

Now in mechanics the motion of material points is determined by the forces or fields of force acting upon them. Hence it was to be expected that those fields of force would also influence De Broglie’s wave fields in an analogous way. Erwin Schrödinger showed how this influence was to be taken into account, re-interpreting by an ingenious method certain formulations of classical mechanics. He even succeeded in expanding the wave mechanical theory to a point where without the introduction of any additional hypotheses, it became applicable to any mechanical system consisting of an arbitrary number of mass points, that is to say possessing an arbitrary number of degrees of freedom. This was possible because a mechanical system consisting of n mass points is mathematically equivalent to a considerable degree, to one single mass point moving in a space of 3 n dimensions.

On the basis of this theory there was obtained a surprisingly good representation of an immense variety of facts which otherwise appeared entirely incomprehensible. But on one point, curiously enough, there was failure: it proved impossible to associate with these Schrödinger waves definite motions of the mass points—and that, after all, had been the original purpose of the whole construction.

The difficulty appeared insurmountable, until it was overcome by Born in a way as simple as it was unexpected. The De Broglie-Schrödinger wave fields were not to be interpreted as a mathematical description of how an event actually takes place in time and space, though, of course, they have reference to such an event. Rather they are a mathematical description of what we can actually know about the system. They serve only to make statistical statements and predictions of the results of all measurements which we can carry out upon the system.

Let me illustrate these general features of quantum mechanics by means of a simple example: we shall consider a mass point kept inside a restricted region G by forces of finite strength. If the kinetic energy of the mass point is below a certain limit, then the mass point, according to classical mechanics, can never leave the region G. But according to quantum mechanics, the mass point, after a period not immediately predictable, is able to leave the region G, in an unpredictable direction, and escape into surrounding space. This case, according to Gamow, is a simplified model of radioactive disintegration.

The quantum theoretical treatment of this case is as follows: at the time t
0
we have a Schrödinger wave system entirely inside G. But from the time t
0
onwards, the waves leave the interior of G in all directions, in such a way that the amplitude of the outgoing wave is small compared to the initial amplitude of the wave system inside G. The further these outside waves spread, the more the amplitude of the waves inside G diminishes, and correspondingly the intensity of the later waves issuing from G. Only after infinite time has passed is the wave supply inside G exhausted, while the outside wave has spread over an ever-increasing space.

But what has this wave process to do with the first object of our interest, the particle originally enclosed in G? To answer this question, we must imagine some arrangement which will permit us to carry out measurements on the particle. For instance, let us imagine somewhere in the surrounding space a screen so made that the particle sticks to it on coming into contact with it. Then from the intensity of the waves hitting the screen at some point, we draw conclusions as to the probability of the particle hitting the screen there at that time. As soon as the particle has hit any particular point of the screen, the whole wave field loses all its physical meaning; its only purpose was to make probability predictions as to the place and time of the particle hitting the screen (or, for instance, its momentum at the time when it hits the screen).

All other cases are analogous. The aim of the theory is to determine the probability of the results of measurement upon a system at a given time. On the other hand, it makes no attempt to give a mathematical representation of what is actually present or goes on in space and time. On this point the quantum theory of to-day differs fundamentally from all previous theories of physics, mechanistic as well as field theories. Instead of a model description of actual space-time events, it gives the probability distributions for possible measurements as functions of time.

It must be admitted that the new theoretical conception owes its origin not to any flight of fancy but to the compelling force of the facts of experience. All attempts to represent the particle and wave features displayed in the phenomena of light and matter, by direct course to a space-time model, have so far ended in failure. And Heisenberg has convincingly shown, from an empirical point of view, any decision as to a rigorously deterministic structure of nature is definitely ruled out, because of the atomistic structure of our experimental apparatus. Thus it is probably out of the question that any future knowledge can compel physics again to relinquish our present statistical theoretical foundation in favor of a deterministic one which would deal directly with physical reality. Logically the problem seems to offer two possibilities, between which we are in principle given a choice. In the end the choice will be made according to which kind of description yields the formulation of the simplest foundation, logically speaking. At the present, we are quite without any deterministic theory directly describing the events themselves and in consonance with the facts.

For the time being, we have to admit that we do not possess any general theoretical basis for physics, which can be regarded as its logical foundation. The field theory, so far, has failed in the molecular sphere. It is agreed on all hands that the only principle which could serve as the basis of quantum theory would be one that constituted a translation of the field theory into the scheme of quantum statistics. Whether this will actually come about in a satisfactory manner, nobody can venture to say.

Some physicists, among them myself, can not believe that we must abandon, actually and forever, the idea of direct representation of physical reality in space and time; or that we must accept the view that events in nature are analogous to a game of chance. It is open to every man to choose the direction of his striving; and also every man may draw comfort from Lessing’s fine saying, that the search for truth is more precious than its possession.

15

The Common Language of Science

 

THE FIRST STEP towards language was to link acoustically or otherwise commutable signs to sense-impressions. Most likely all sociable animals have arrived at this primitive kind of communication—at least to a certain degree. A higher development is reached when further signs are introduced and understood which establish relations between those other signs designating sense-impression. At this stage it is already possible to report somewhat complex series of impressions; we can say that language has come to existence. If language is to lead at all to understanding, there must be rules concerning the relations between the signs on the one hand and on the other hand there must be a stable correspondence between signs and impressions. In their childhood individuals connected by the same language grasp these rules and relations mainly by intuition. When man becomes conscious of the rules concerning the relations between signs the so-called grammar of language is established.

BOOK: Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words
11.22Mb size Format: txt, pdf, ePub
ads

Other books

The Diamond by King, J. Robert
Desperate Times by Nicholas Antinozzi
Under My Skin by Laura Diamond
The Demon's Covenant by Sarah Rees Brennan
Fermentation by Angelica J.
The Drowning Game by LS Hawker