Quantum Theory Cannot Hurt You (4 page)

BOOK: Quantum Theory Cannot Hurt You
13.69Mb size Format: txt, pdf, ePub

Quantum computers are extremely difficult to build. The reason is that the ability of the individual states of a quantum superposition to interfere with each other is destroyed, or severely degraded, by the environment. This destruction can be vividly seen in the double slit experiment.

If some kind of particle detector is used to spot a particle going through one of the slits, the interference stripes on the screen immediately vanish, to be replaced by more or less uniform illumination. The act of observing which slit the particle goes through is all that is needed to destroy the superposition in which it goes through both slits simultaneously. And a particle going through one slit only is as likely to exhibit interference as you are to hear the sound of one hand clapping.

What has really happened here is that an attempt has been made to locate, or measure, the particle by the outside world. Knowledge of the superposition by the outside world is all that is needed to destroy it. It is almost as if quantum superpositions are a secret. Of course, once the world knows about the secret, the secret no longer exists!

Superpositions are
continually
being measured by their environment. And it takes only a single photon to bounce off a superposition
and take information about it to the rest of the world to destroy the superposition. This process of natural measurement is called decoherence. It is the ultimate reason we do not see weird quantum behaviour in the everyday world.
2
Although naively we may think of quantum behaviour as a property of small things like atoms but not of big things like people and trees, this is not necessarily so. Quantum behaviour is actually a property of isolated things. The reason we see it in the microscopic world but not in the everyday world is simply because it is easier to isolate a small thing from its surroundings than a big thing.

The price of quantum schizophrenia is therefore isolation. As long as a microscopic particle like an atom can remain isolated from the outside world, it can do many different things at once. This is not difficult in the microscopic world, where quantum schizophrenia is an everyday phenomenon. However, in the large-scale world in which we live, it is nearly impossible, with countless quadrillions of photons bouncing off every object every second.

Keeping a quantum computer isolated from its surroundings is the main obstacle facing physicists in trying to construct such a machine. So far, the biggest quantum computer they have managed to build has been composed of only 10 atoms, storing 10 qubits. Keeping 10 atoms isolated from their surroundings for any length of time takes all their ingenuity. If a single photon bounces off the computer, 10 schizophrenic atoms instantly become 10 ordinary atoms.

Decoherence illustrates a limitation of quantum computers not often publicised amid the hype surrounding such devices. To extract an answer, someone from the outside world—you—must interact with it, and this necessarily destroys the superposition. The quantum computer reverts to being an ordinary computer in a single state. A 10-qubit machine, instead of spitting out the answers to 1,024 separate calculations, spits out just one.

Quantum computers are therefore restricted to parallel calculations that output only a single answer. Consequently, only a limited number of problems are suited to solution by quantum computer, and much ingenuity is required to find them. They are not, as is often claimed, the greatest thing since sliced bread. Nevertheless, when a problem is found that plays to the strengths of a quantum computer, it can massively outperform a conventional computer, calculating in seconds what otherwise might take longer than the lifetime of the Universe.

On the other hand, decoherence, which is the greatest enemy of those struggling to build quantum computers, is also their greatest friend. It is because of decoherence, after all, that the giant superposition of a quantum computer with all its mutually interfering strands is finally destroyed; it is only by being destroyed—reduced to a single state representing a single answer—that anything useful comes out of such a machine. The world of the quantum is indeed a paradoxical one!

1
Binary was invented by the 17th-century mathematician Gottfried Leibniz. It is a way of representing numbers as a strings of zeros and ones. Usually, we use decimal, or base 10. The right-hand digit represents the ones, the next digit the tens, the next the 10 × 10s, and so on. So, for instance, 9,217 means 7 + 1 × 10 + 2 × (10 × 10) + 9 × (10 × 10 × 10). In binary, or base 2, the right-hand digit represents the ones, the next digit the twos, the next the 2 × 2s, and so on. So for instance, 1101 means 1 + 0 × 2 + 1 × (2 × 2) + 1 × (2 × 2 × 2), which in decimal is 13.

2
I am totally aware that all this talk of quantumness being a “secret” that is destroyed if the rest of the world learns about it is a complete fudge. But it is sufficient for our discussion here. Decoherence, the means by which the quantum world, with its schizophrenic superpositions, becomes the everyday world where trees and people are never in two places at once, is a can of worms with which the experts are still wrestling. For a real explanation, see Chapter 5, “The Telepathic Universe.”

4

U
NCERTAINTY AND THE
L
IMITS OF
K
NOWLEDGE

W
HY WE CAN NEVER KNOW ALL WE WOULD LIKE TO KNOW ABOUT ATOMS AND WHY THIS FACT MAKES ATOMS POSSIBLE

Passing farther through the quantum land our travelers met quite a lot
of other interesting phenomena, such as quantum mosquitoes, which
could scarcely be located at all, owing to their small mass.

George Gamow

He must be going mad. Only moments before he had parked his shiny
red Ferrari in the garage. He had even stood there on the driveway, admiring
his pride and joy until the last possible moment, as the automatic
door swung shut. But then as he crunched across the gravel to his
front door there had been a curious rustling of the air, a faint tremor of
the ground. He had wheeled round. And there, squatting back on his
driveway, in front of the still-locked garage doors, was his beautiful red
Ferrari!

Such Houdini-like feats of escapology are never of course seen in the everyday world. In the realm of the ultrasmall, however, they are a common occurrence. One instant an atom can be locked up in a microscopic prison; the next it has shed its shackles and slipped away silently into the night.

This miraculous ability to escape escape-proof prisons is entirely due to the wavelike face of microscopic particles, which enables atoms and their constituents to do all the things that waves can do. And one of the many things waves can do is penetrate apparently impenetrable barriers. This is not an obvious or well-known wave property. But it can be demonstrated by a light beam travelling through a block of glass and trying to escape into the air beyond.

The key thing is what happens at the edge of the glass block, the boundary where the glass meets the air. If the light happens to strike the boundary at a shallow angle, it gets reflected back into the glass block and fails to escape into the air beyond. In effect, it is imprisoned in the glass. However, something radically different happens if another block of glass is brought close to the boundary, leaving a small gap of air between the two blocks. Just as before, some of the light is reflected back into the glass. But—and this is the crucial thing—some of the light now leaps the air gap and travels into the second glass block.

The parallel between the Ferrari escaping its garage and the light escaping the block of glass may not be very obvious. However, for all intents and purposes, the air gap should be just as impenetrable a barrier to the light as the garage walls are to the Ferrari.

The reason the light wave can penetrate the barrier and escape from the block of glass is that a wave is not a localised thing but something spread out through space. So when the light waves strike the glass-air boundary and are reflected back into the glass, they are not actually reflected from the exact boundary of the glass. Instead, they penetrate a short distance into the air beyond. Consequently, if they encounter another block of glass before they can turn back, they can continue on their way. Place a second glass block within a hair’s breadth of the first and, hey presto, the light jumps the air gap and escapes its prison.

This ability to penetrate an apparently impenetrable barrier is common to all types of waves, from light waves to sound waves to the probability waves associated with atoms. It therefore manifests itself
in the microscopic world. Arguably, the most striking example is the phenomenon of alpha decay in which an alpha particle breaks out of the apparently escape-proof prison of an atomic nucleus.

BREAKING OUT OF A NUCLEUS

An alpha particle is the nucleus of a helium atom. An unstable, or radioactive, nucleus sometimes spits out an alpha particle in a desperate attempt to turn itself into a lighter and more stable nucleus. The process poses a big puzzle, however. By rights, an alpha particle should not be able to get out of a nucleus.

Think of an Olympic high jumper penned in by a 5-metre-high metal fence. Even though he is one of the best high jumpers in the world, there is no way he can jump over a fence that high. No human being alive has sufficient strength in their legs. Well, an alpha particle inside an atomic nucleus finds itself in a similar position. The barrier that pens it in is created by the nuclear forces that operate inside a nucleus, but it is just as impenetrable a barrier to the alpha particle as the solid metal fence is to the high jumper.

Contrary to all expectations, however, alpha particles do escape from atomic nuclei. And their escape is entirely due to their wavelike face. Like light waves trapped in a glass block, they can penetrate an apparently impenetrable barrier and slip away quietly into the outside world.

This process is called quantum tunnelling and alpha particles are said to “tunnel” out of an atomic nucleus. Tunnelling is actually an instance of a more general phenomenon known as uncertainty, which puts a fundamental limit on what we can and cannot know about the microscopic world. The double slit experiment is an excellent demonstration of uncertainty.

THE HEISENBERG UNCERTAINTY PRINCIPLE

The reason a microscopic particle like an electron can go through both slits in the screen simultaneously is that it can exist as a superposition of two waves—one wave corresponding to the particle going through one slit and the other to the particle going through the other slit. But that is not sufficient to guarantee that its schizophrenic behaviour will be noticed. For that to happen, an interference pattern must appear on the second screen. But this, of course, requires the individual waves in the superposition to interfere. The fact that interference is a crucial ingredient for the electron to exhibit weird quantum behaviour turns out to have profound implications for what nature permits us to know about the electron.

Say in the double slit experiment we try to locate the slit each electron goes through. If we succeed, the interference pattern on the second screen disappears. After all, interference requires that two things mingle. If the electron and its associated probability wave go through only one slit, there is only one thing.

How, in practice, could we locate which slit an electron goes through? Well, to make the double slit experiment a bit easier to visualise, think of an electron as a bullet from a machine gun and the screen as a thick metal sheet with two vertical parallel slits. When bullets are fired at the screen, some enter the slits and go through. Think of the slits as deep channels cut through the thick metal. The bullets ricochet off the internal walls of the channels and by this means reach the second screen. They can obviously hit any point on the second screen. But, for simplicity, imagine they end up at the midpoint of the second screen. Also for simplicity, say that at this point the probability waves associated with the bullets interfere constructively, so it is a place that gets peppered with lots of bullets.

Now, when a bullet ricochets off the inside of a slit, it causes the metal screen to recoil in the opposite direction. It’s the same if you are playing tennis and a fast serve ricochets off your racquet. Your
racquet recoils in the opposite direction. Crucially, the recoil of the screen can be used to deduce which slit a bullet goes through. After all, if the screen moves to the left, the bullet must have gone through the left-hand slit; if it moves to the right, it must have been the right-hand slit.

However, we know that if we locate which slit a bullet goes through, it destroys the interference pattern on the second screen. This is straightforward to understand from the wave point of view. We are as unlikely to see one thing interfere with itself as we are to hear the sound of one hand clapping. But how do we make sense of things from the equally valid particle point of view?

Remember that the interference pattern on the second screen is like a supermarket bar code. It consists of vertical “stripes” where no bullets hit, alternating with vertical stripes where lots of bullets hit. For simplicity, think of the stripes as black and white. The key question therefore is: From the bullet’s point of view, what would it take to destroy the interference pattern?

The answer is a little bit of sideways jitter. If each bullet, instead of flying unerringly towards a black stripe, possesses a little sideways jitter in its trajectory so that it can hit either the black stripe or an adjacent white stripe, this will be sufficient to “smear out” the interference pattern. Stripes that were formerly white will become blacker, and stripes that were formerly black will become whiter. The net result will be a uniform gray. The interference pattern will be smeared out.

Because it must be impossible to tell whether a given bullet will hit a black stripe or an adjacent white stripe (or vice versa), the jittery sideways motion of each bullet must be entirely unpredictable. And all this must come to pass for no other reason than that we are locating which slit each bullet goes through by the recoil of the screen.

In other words, the very act of pinning down the location of a particle like an electron adds unpredictable jitter, making its velocity uncertain. And the opposite is true as well. The act of pinning down the velocity of a particle makes its location uncertain. The first person
to recognise and quantify this effect was the German physicist Werner Heisenberg, and it is called the Heisenberg uncertainty principle in his honour.

According to the uncertainty principle, it is impossible to know both the location and the velocity of a microscopic particle with complete certainty. There is a trade-off, however. The more precisely its location is pinned down, the more uncertain is its velocity. And the more precisely its velocity is pinned down, the more uncertain its location.

Imagine if this constraint also applied to what we could know about the everyday world. If we had precise knowledge of the speed of a jet aeroplane, we would not be able to tell whether it was over London or New York. And if we had precise knowledge of the location of the aeroplane, we would be unable to tell whether it was cruising at 1,000 kilometres per hour or 1 kilometre per hour—and about to plummet out of the sky.

The uncertainty principle exists to
protect
quantum theory. If you could measure the properties of atoms and their like better than the uncertainty principle permits, you would destroy their wave behaviour—specifically, interference. And without interference, quantum theory would be impossible. Measuring the position and velocity of a particle with greater accuracy than the uncertainty principle dictates must therefore be impossible. Because of the Heisenberg uncertainty principle, when we try to look closely at the microscopic world, it starts to get fuzzy, like a newspaper picture that has been overmagnified. Infuriatingly, nature does not permit us to measure precisely all we would like to measure. There is a limit to our knowledge.

This limit is not simply a quirk of the double slit experiment. It is fundamental. As Richard Feynman remarked: “No one has ever found (or even thought of) a way around the uncertainty principle. Nor are they ever likely to.”

It is because alpha particles have a wavelike character that they can escape the apparently escape-proof prison of an atomic nucleus.

However, the Heisenberg uncertainty principle makes it possible to understand the phenomenon from the particle point of view.

GOING WHERE NO HIGH JUMPER HAS GONE BEFORE

Recall that an alpha particle in a nucleus is like an Olympic high jumper corralled by a 5-metre-high fence. Common sense says that it is moving about inside the nucleus with insufficient speed to launch itself over the barrier. But common sense applies only to the everyday world, not to the microscopic world. Ensnared in its nuclear prison, the alpha particle is very localised in space—that is, its position is pinned down with great accuracy. According to the Heisenberg uncertainty principle, then, its velocity must necessarily be very uncertain. It could, in other words, be much greater than we think. And if it is greater, then, contrary to all expectations, the alpha particle can leap out of the nucleus—a feat comparable to the Olympic high jumper jumping the 5-metre fence.

Alpha particles emerge into the world outside their prison as surprisingly as the Ferrari emerged into the world outside its garage. And this “tunnelling” is due to the Heisenberg uncertainty principle. But tunnelling is a two-way process. Not only can subatomic particles like alpha particles tunnel out of a nucleus, they can tunnel into it too. In fact, such tunnelling in reverse helps explain a great mystery: why the Sun shines.

TUNNELLING IN THE SUN

The Sun generates heat by gluing together protons—the nuclei of hydrogen atoms—to make the nuclei of helium atoms.
1
This nuclear fusion produces as a by-product a dam burst of nuclear binding energy, which ultimately emerges from the Sun as sunlight.

But hydrogen fusion has a problem. The force of attraction that glues together protons—the “strong nuclear force”—has an extremely short range. For two protons in the Sun to come under its influence and be snapped together, they must pass extremely close to each other. But two protons, by virtue of their similar electric charge, repel each other ferociously. To overcome this fierce repulsion, the protons must collide at enormous speed. In practice, this requires the core of the Sun, where nuclear fusion goes on, to be at an extremely high temperature.

Physicists calculated the necessary temperature in the 1920s, just as soon as it was suspected that the Sun was running on hydrogen fusion. It turned out to be roughly 10 billion degrees. This, however, posed a problem. The temperature at the heart of the Sun was known to be only about 15 million degrees—roughly a thousand times lower. By rights, the Sun should not be shining at all. Enter the German physicist Fritz Houtermans and the English astronomer Robert Atkinson.

When a proton in the core of the Sun approaches another proton and is pushed back by its fierce repulsion, it is just as if it encounters a high brick wall surrounding the second proton. At the 15 million degrees temperature in the heart of the Sun, the proton would appear to be moving far too slowly to jump the wall. However, the Heisenberg uncertainty principle changes everything.

Other books

Wish Upon a Star by Klasky, Mindy
Hotel Bosphorus by Esmahan Aykol
Patriot Hearts by John Furlong
the mortis by Miller, Jonathan R.
The Prodigal Nun by Aimée Thurlo
Careless In Red by George, Elizabeth
Discovering Emily by Jacqueline Pearce