Seeing Further (2 page)

Read Seeing Further Online

Authors: Bill Bryson

BOOK: Seeing Further
10.62Mb size Format: txt, pdf, ePub

The Society has also demonstrated a heroic, and indeed endearing, tendency to recognise the unsung. The example that leaps to mind for me here is that of Hermann Sprengel, the forgotten father of electric lighting. Everyone thanks Joseph Swan and Thomas Edison for giving us the homely glow of incandescent lighting, but in fact Sir William Grove (who, it more or less goes without saying, was himself a Fellow) had demonstrated a working incandescent bulb well over thirty years before them – seven years before Edison was even born. It’s just that Grove’s bulb didn’t last very long. What was needed was a vacuum that would allow a filament to burn for long periods. Sprengel, a German chemist working in London, invented a pump that could drain the air from a glass chamber down to one-millionth of its normal volume, allowing filaments to burn for hours and making electric lighting a commercial possibility at last. Edison and Swan found the filaments and got the glory. Sprengel was forgotten almost at once by everyone except the Royal Society, which made him a Fellow in 1878, nearly fifteen years before he was recognised by any institution in his native Germany.

The best place I know to get some sense of what the Royal Society is and has achieved is a modest, crowded storeroom in the basement of its headquarters in Carlton House Terrace in London. Here, neatly shelved or tucked into drawers and cabinets, are three and a half centuries of accumulated treasures – Newton’s manuscript copy of the
Principia,
the Shelton Regulator clock used by Captain Cook to time the transit of Venus on the
Endeavour
voyage, Joseph Priestley’s folding spectacles, Leeuwenhoek’s precious drawings, the papers of Robert Hooke and Robert Boyle – representing the moments of birth of some of the most enormous ideas human minds have ever had.

Keith Moore, the Society’s librarian, reaches into an anonymous-looking metal cupboard and, with an air of gentleness and care, brings out a white box. Inside it, resting delicately, is an object that automatically provokes an awed hush: the death mask of Isaac Newton. Only by a remarkable chance did the mask come into the Society’s possession. It had been lost for many years when, in 1839, a Mr Christie, a Fellow of the Society, developed a sudden desire to have a bust of Newton on his shelves and called in at a curio shop on Tichborne Street in London, near his place of work, to ask if they had anything. The shopkeeper replied that he had no statues, but they had a curious mask, which his father had bought many years before. After some rooting around, he found it and brought it to Christie to examine. It was Newton’s death mask. It had sat unregarded on a shelf for at least half a century, and in all likelihood would eventually have been lost altogether had Christie not made his lucky enquiry.

The mask is a transfixing object, not surprisingly, but what is more unexpectedly moving is a small, exquisite piece of apparatus that sits on the shelf alongside it: a reflecting telescope made by Newton himself in 1669. It is only six inches long but beautifully fashioned. Newton ground the glass himself, designed the swivelling socket, turned the wood with his own hand. In its time this was an absolute technological marvel, but it is also a thing of lustrous beauty. Nowhere could you find an item that more vividly demonstrates the beauty as well as the wonder of science.

Keith shows me some papers he has just been cataloguing. They are letters from Thomas Thorpe, an English chemist, written to his wife, Emma, during an 1878 Royal Society expedition to the American west. The purpose of the expedition was to view a solar eclipse, which, among other things, would allow them to confirm or disprove the existence of the planet Vulcan. The papers are irresistibly absorbing, partly because Thorpe brings a scientist’s curiosity to everything he sees – the quality of US trout, the character of the town of Cheyenne (home of ‘6,000 of the biggest scoundrels the world contains’), the climate, geology, everything – but also because they so vividly and charmingly catalogue the difficulties and discomforts necessary to do science in the field in the nineteenth century (or possibly any time).

When you look along the stacks or peek into the drawers, it is impossible not to be struck with wonder at how much aggregated human effort – how much thought and toil and nights under canvas – is embedded in what we know about the world and universe and how they are put together.

‘This is only a small part of it,’ Keith tells me. ‘There are eight thousand more boxes in storage in Wiltshire.’ He smiles. ‘You generate a lot of material in 350 years.’

Which brings me to my third remarkable fact about the Royal Society: it’s still there. More than that, it is still there
and
it is still important. How many enterprises can you name that are still doing today what they were formed to do 350 years ago?

It has had its moments of faltering, goodness knows. At times its quenchless curiosity has threatened to give way to mere morbidity. In the early days it was particularly fascinated with monstrous births and that kind of thing, and sometimes it engaged in experiments that were patently imprudent.

One such was in November 1667 when a penurious student named Arthur Coga was induced to let two Fellows transfuse sheep’s blood into him in return for the payment of a guinea. No one had any idea what would happen – whether it would kill him or fill him with boundless energy – and this degree of uncertainty left some of the more reflective members feeling distinctly uneasy. In the event, the transfusion didn’t do much of anything. Before an audience that included the Bishop of Salisbury, 14 ounces of blood were pumped out of the sheep and into Coga. It seemed to do him no harm. Afterwards, one of those present reported, ‘the patient was well and merry, and drank a glass or two of canary, and took a pipe of tobacco’. He went home, slept well and reported no ill effects. Just under two weeks later, the operation was repeated for a new audience. Soon afterwards, however, reports began to trickle in from all over Europe that the experiment had been tried several times elsewhere, often with fatal results. The Society, happily, never tried anything like that again.

If the Royal Society had done nothing after Newton, its fame would be secure. In fact, there were times when it looked as if it might not do much. Twenty years after Newton’s reign, it had a president, Martin Folkes, who was famous for slumbering through meetings, and financial difficulties that threatened to become insoluble. By 1740, barely half the Fellows could be counted on to pay their dues, and some were so severely in arrears that the Society’s accumulated deficit had risen to over £1,800 – a worrying sum for a private body of modest size. Partly to restore the balance sheet, it began taking in members who were distinguished but not terribly scientific. By the end of the century, Fellows included Edward Gibbon, Warren Hastings and even Lord Byron. Without actually ceasing to be worthy, it could easily have declined into something more peripheral and much less important.

Clearly that didn’t happen. At every critical moment throughout its history there has always been an Isaac Newton, a Joseph Banks, a Humphry Davy, a T.H. Huxley, a Lord Rutherford to give the Society clout and lustre, and to keep it firmly attached to scientific endeavour at the highest level.

Today the Royal Society’s interests remain an inspiration to recite. It provides 350 research fellowships and its grants support the work of 3,000 scientists all over the world. It bestows great numbers of medals and prizes, maintains an active programme of lectures and debates, and holds a beloved Summer Science Exhibition, which no one who appreciates science and can get to London should miss. It acts as the scientific conscience of the nation. It publishes seven journals, and an endless stream of papers. It remains emphatically international in its outlook, maintaining close links with ninety-one science academies around the world. If we have an Earth worth living on a hundred years from now, the Royal Society will be one of the organisations our grandchildren will wish to thank.

Poke your head through any door in the Royal Society building and what you are likely to find is people in meetings. They meet endlessly at the Royal Society. My own involvement, like that of most outsiders, has been as a member of committees – in my case a committee to select the winners of the annual books prize and another involved with the 350th anniversary celebrations – and on almost every visit to the building I have opened three or four wrong doors to find other people meeting. For a long time I wondered what they could possibly all be meeting about. Then I was given a copy of an extraordinary volume – a sturdy hardback called the
Royal Society Year Book,
which in about 500 pages summarises all that the Royal Society does in a year.

Flick through it at random and you find that it is involved in an impossibly varied range of activities. There is a Dorothy Hodgkin Fellowships Committee, a Hooke Committee, a Trans-Antarctic Association UK Advisory Committee, a Darwin Correspondence Project, a Sir Harold
Hartley Lecture Committee, a Scientific Unions Committee, a South East Asia Rainforest Research Committee, a Newton International Fellowships Committee, a Rosalind Franklin Award Committee, and dozens and dozens more. There is even an Anatomy, Physiology, Endocrinology and Pharmacology (Except Clinical Aspects) of Animal Systems, Neurosciences, Psychology and Reproductive Biology, and Relevant Agricultural Studies Committee (known informally, and perhaps a bit mercifully, as ‘Panel 8’).

Altogether at the Royal Society there are ninety-six committees, all devoted to promoting important research, honouring an achievement, improving education, badgering governments into behaving intelligently, or otherwise effecting an enhancement to what we know or an improvement to how we proceed.

The most important committees of all are the ten devoted to electing new Fellows. Today there are 1,400 Fellows, including 69 Nobel laureates, and it is they who run the Society. ‘It is,’ Stephen Cox tells me, smiling, ‘like a company with 1,400 non-executive directors. They set policy and identify key areas of concern. It’s
their
society.’

Because of all that it has achieved in its time, there is a tendency to equate the Royal Society with things like atoms and gravity and other bits of hard science, but what impresses me is the boundlessness of its range. Consider the contribution of John Lubbock, friend and neighbour of Charles Darwin. Lubbock was a banker by profession, but was in addition a distinguished botanist, astronomer, expert on the social behaviour of insects, politician and antiquarian. Among much else, he coined the terms
palaeolithic, mesolithic
and
neolithic
in 1865. But his real contribution to life was to push through Parliament the first Ancient Monuments Protection Act, which became law in 1882. People forget how much of Britain’s historic fabric was nearly destroyed in the past. Before Lubbock’s intervention, half of Avebury was nearly cleared away for housing, and at one point it was even threatened that Stonehenge, then still in private hands, might be dismantled and shipped to America. Without Lubbock, many stone circles, tumuli and other historical features of the landscape would have vanished long ago. Lubbock also, not incidentally, invented the bank holiday. The Royal Society and its Fellows, you see, have long been at the heart of all kinds of things.

It is impossible to list all the ways that the Royal Society has influenced the world, but you can get some idea by typing in ‘Royal Society’ as a word search in the electronic version of the
Dictionary of National Biography.
That produces 218 pages of results – 4,355 entries, nearly as many as for the Church of England (at 4,500) and considerably more than for the House of Commons (3,124) or House of Lords (2,503). It is more central to the life and history of Great Britain than most people realise.

And as you are about to see, it not only produces the best science, but also some of the very best science writing.

1 J
AMES
G
LEICK
A
T
T
HE
B
EGINNING
: M
ORE
T
HINGS IN
H
EAVEN AND
E
ARTH

James Gleick last visited the Royal Society when researching his recent biography
Isaac Newton.
His first book,
Chaos,
was a National Book Award and Pulitzer Prize finalist and an international bestseller, translated into more than twenty languages. His other books include
Genius: The Life and Science of Richard Feynman, Faster: The Acceleration of Just About Everything
and
What Just Happened: A Chronicle from the Information Frontier.

T
HE FIRST FORMAL MEETING OF WHAT BECAME THE
R
OYAL SOCIETY WAS HELD IN
L
ONDON ON
28 N
OVEMBER
1660. T
HE DOZEN MEN PRESENT AGREED TO CONSTITUTE THEMSELVES AS A SOCIETY FOR ‘THE PROMOTING OF EXPERIMENTAL PHILOSOPHY’
. E
XPERIMENTAL PHILOSOPHY
? W
HAT COULD THAT MEAN
? A
S
J
AMES
G
LEICK SHOWS FROM THEIR OWN RECORDS, IT MEANT, AMONG OTHER THINGS, A BOUNDLESS CURIOSITY ABOUT NATURAL PHENOMENA OF ALL KINDS, AND SOMETHING ELSE – A KIND OF EXUBERANCE OF INQUIRY WHICH HAS LASTED INTO OUR OWN DAY.

To invent science was a heavy responsibility, which these gentlemen took seriously. Having declared their purpose to be ‘improving’ knowledge, they gathered it and they made it – two different things. From their beginnings in the winter of 1660–61, when they met with the King’s approval Wednesday afternoons in Laurence Rooke’s room at Gresham College, their way of making knowledge was mainly to talk about it.

For accumulating information in the raw, they were well situated in the place that seemed to them the centre of the universe: ‘It has a large Intercourse with all the Earth: … a City, where all the Noises and Business in the World do meet: … the constant place of Residence for that Knowledge, which is to be made up of the Reports and Intelligence of all Countries.’ But we who know everything tend to forget how little was known. They were starting from scratch. To the extent that the slate was not blank, it often needed erasure.

Other books

Tiger's Obsession by Pet TorreS
The Stone Gallows by C David Ingram
The One a Month Man by Michael Litchfield
La casa de los amores imposibles by Cristina López Barrio
Front Yard by Norman Draper
Dead Floating Lovers by Elizabeth Kane Buzzelli
Trust in Us by Altonya Washington
Queer Theory and the Jewish Question by Daniel Boyarin, Daniel Itzkovitz, Ann Pellegrini
Miss Webster and Chérif by Patricia Duncker