Silent Spring (30 page)

Read Silent Spring Online

Authors: Rachel Carson

BOOK: Silent Spring
13.12Mb size Format: txt, pdf, ePub

An immense amount of work on the subject of chromosome abnormalities is being done by workers in many countries. A group at the University of Wisconsin, headed by Dr. Klaus Patau, has been concentrating on a variety of congenital abnormalities, usually including mental retardation, that seem to result from the duplication of only part of a chromosome, as if somewhere in the formation of one of the germ cells a chromosome had broken and the pieces had not been properly redistributed. Such a mishap is likely to interfere with the normal development of the embryo.

According to present knowledge, the occurrence of an entire extra body chromosome is usually lethal, preventing survival of the embryo. Only three such conditions are known to be viable; one of them, of course, is mongolism. The presence of an extra attached fragment, on the other hand, although seriously damaging is not necessarily fatal, and according to the Wisconsin investigators this situation may well account for a substantial part of the so far unexplained cases in which a child is born with multiple defects, usually including mental retardation.

This is so new a field of study that as yet scientists have been more concerned with identifying the chromosome abnormalities associated with disease and defective development than with speculating about the causes. It would be foolish to assume that any single agent is responsible for damaging the chromosomes or causing their erratic behavior during cell division. But can we afford to ignore the fact that we are now filling the environment with chemicals that have the power to strike directly at the chromosomes, affecting them in the precise ways that could cause such conditions? Is this not too high a price to pay for a sproutless potato or a mosquitoless patio?

We can, if we wish, reduce this threat to our genetic heritage, a possession that has come down to us through some two billion years of evolution and selection of living protoplasm, a possession that is ours for the moment only, until we must pass it on to generations to come. We are doing little now to preserve its integrity. Although chemical manufacturers are required by law to test their materials for toxicity, they are not required to make the tests that would reliably demonstrate genetic effect, and they do not do so.

14. One in Every Four

 

T
H
E
B
A
T
T
L
E
of living things against cancer began so long ago that its origin is lost in time. But it must have begun in a natural environment, in which whatever life inhabited the earth was subjected, for good or ill, to influences that had their origin in sun and storm and the ancient nature of the earth. Some of the elements of this environment created hazards to which life had to adjust or perish. The ultraviolet radiation in sunlight could cause malignancy. So could radiations from certain rocks, or arsenic washed out of soil or rocks to contaminate food or water supplies.

The environment contained these hostile elements even before there was life; yet life arose, and over the millions of years it came to exist in infinite numbers and endless variety. Over the eons of unhurried time that is nature's, life reached an adjustment with destructive forces as selection weeded out the less adaptable and only the most resistant survived. These natural cancer-causing agents are still a factor in producing malignancy; however, they are few in number and they belong to that ancient array of forces to which life has been accustomed from the beginning.

With the advent of man the situation began to change, for man, alone of all forms of life, can
create
cancer-producing substances, which in medical terminology are called carcinogens. A few man-made carcinogens have been part of the environment for centuries. An example is soot, containing aromatic hydrocarbons. With the dawn of the industrial era the world became a place of continuous, ever-accelerating change. Instead of the natural environment there was rapidly substituted an artificial

one composed of new chemical and physical agents, many of them possessing powerful capacities for inducing biologic change. Against these carcinogens which his own activities had created man had no protection, for even as his biological heritage has evolved slowly, so it adapts slowly to new conditions. As a result these powerful substances could easily penetrate the inadequate defenses of the body.

The history of cancer is long, but our recognition of the agents that produce it has been slow to mature. The first awareness that external or environmental agents could produce malignant change dawned in the mind of a London physician nearly two centuries ago. In 1775 Sir Percivall Pott declared that the scrotal cancer so common among chimney sweeps must be caused by the soot that accumulated on their bodies. He could not furnish the "proof" we would demand today, but modern research methods have now isolated the deadly chemical in soot and proved the correctness of his perception.

For a century or more after Pott's discovery there seems to have been little further realization that certain of the chemicals in the human environment could cause cancer by repeated skin contact, inhalation, or swallowing. True, it had been noticed that skin cancer was prevalent among workers exposed to arsenic fumes in copper smelters and tin foundries in Cornwall and Wales. And it was realized that workers in the cobalt mines in Saxony and in the uranium mines at Joachimsthal in Bohemia were subject to a disease of the lungs, later identified as cancer. But these were phenomena of the pre-industrial era, before the flowering of the industries whose products were to pervade the environment of almost every living thing.

The first recognition of malignancies traceable to the age of industry came during the last quarter of the 19th century. About the time that Pasteur was demonstrating the microbial origin of many infectious diseases, others were discovering the chemical origin of cancer—skin cancers among workers in the new lignite industry in Saxony and in the Scottish shale industry, along with other cancers caused by occupational exposure to tar and pitch. By the end of the 19th century a half-dozen sources of industrial carcinogens were known; the 20th century was to create countless new cancer-causing chemicals and to bring the general population into intimate contact with them. In the less than two centuries intervening since the work of Pott, the environmental situation has been vastly changed. No longer are exposures to dangerous chemicals occupational alone; they have entered the environment of everyone—even of children as yet unborn. It is hardly surprising, therefore, that we are now aware of an alarming increase in malignant disease.

The increase itself is no mere matter of subjective impressions. The monthly report of the Office of Vital Statistics for July 1959 states that malignant growths, including those of the lymphatic and blood-forming tissues, accounted for 15 per cent of the deaths in 1958 compared with only 4 per cent in 1900. Judging by the present incidence of the disease, the American Cancer Society estimates that 45,000,000 Americans now living will eventually develop cancer. This means that malignant disease will strike two out of three families.

The situation with respect to children is even more deeply disturbing. A quarter century ago, cancer in children was considered a medical rarity.
Today, more American school children die of cancer than from any other disease.
So serious has this situation become that Boston has established the first hospital in the United States devoted exclusively to the treatment of children with cancer. Twelve per cent of all deaths in children between the ages of one and fourteen are caused by cancer. Large numbers of malignant tumors are discovered clinically in children under the age of five, but it is an even grimmer fact that significant numbers of such growths are present at or before birth. Dr. W. C. Hueper of the National Cancer Institute, a foremost authority on environmental cancer, has suggested that congenital cancers and cancers in infants may be related to the action of cancer-producing agents to which the mother has been exposed during pregnancy and which penetrate the placenta to act on the rapidly developing fetal tissues. Experiments show that the younger the animal is when it is subjected to a cancer-producing agent the more certain is the production of cancer. Dr. Francis Ray of the University of Florida has warned that "we may be initiating cancer in the children of today by the addition of chemicals [to food]... We will not know, perhaps for a generation or two, what the effects will be."

The problem that concerns us here is whether any of the chemicals we are using in our attempts to control nature play a direct or indirect role as causes of cancer. In terms of evidence gained from animal experiments we shall see that five or possibly six of the pesticides must definitely be rated as carcinogens. The list is greatly lengthened if we add those considered by some physicians to cause leukemia in human patients. Here the evidence is circumstantial, as it must be since we do not experiment on human beings, but it is nonetheless impressive. Still other pesticides will be added as we include those whose action on living tissues or cells may be considered an indirect cause of malignancy.

One of the earliest pesticides associated with cancer is arsenic, occurring in sodium arsenite as a weed killer, and in calcium arsenate and various other compounds as insecticides. The association between arsenic and cancer in man and animals is historic. A fascinating example of the consequences of exposure to arsenic is related by Dr. Hueper in his
Occupational Tumors,
a classic monograph on the subject. The city of Reichenstein in Silesia had been for almost a thousand years the site of mining for gold and silver ores, and for several hundred years for arsenic ores. Over the centuries arsenic wastes accumulated in the vicinity of the mine shafts and were picked up by streams coming down from the mountains. The underground water also became contaminated, and arsenic entered the drinking water. For centuries many of the inhabitants of this region suffered from what came to be known as "the Reichenstein disease"—chronic arsenicism with accompanying disorders of the liver, skin, and gastrointestinal and nervous systems. Malignant tumors were a common accompaniment of the disease. Reichenstein's disease is now chiefly of historic interest, for new water supplies were provided a quarter of a century ago, from which arsenic was largely eliminated. In Cordoba Province in Argentina, however, chronic arsenic poisoning, accompanied by arsenical skin cancers, is endemic because of the contamination of drinking water derived from rock formations containing arsenic.

It would not be difficult to create conditions similar to those in Reichenstein and Cordoba by long continued use of arsenical insecticides. In the United States the arsenic-drenched soils of tobacco plantations, of many orchards in the Northwest, and of blueberry lands in the East may easily lead to pollution of water supplies.

An arsenic-contaminated environment affects not only man but animals as well. A report of great interest came from Germany in 1936. In the area about Freiberg, Saxony, smelters for silver and lead poured arsenic fumes into the air, to drift out over the surrounding countryside and settle down upon the vegetation. According to Dr. Hueper, horses, cows, goats, and pigs, which of course fed on this vegetation, showed loss of hair and thickening of the skin. Deer inhabiting nearby forests sometimes had abnormal pigment spots and precancerous warts. One had a definitely cancerous lesion. Both domestic and wild animals were affected by "arsenical enteritis, gastric ulcers, and cirrhosis of the liver." Sheep kept near the smelters developed cancers of the nasal sinus; at their death arsenic was found in the brain, liver, and tumors. In the area there was also "an extraordinary mortality among insects, especially bees. After rainfalls which washed the arsenical dust from the leaves and carried it along into the water of brooks and pools, a great many fish died."

An example of a carcinogen belonging to the group of new, organic pesticides is a chemical widely used against mites and ticks. Its history provides abundant proof that, despite the supposed safeguards provided by legislation, the public can be exposed to a known carcinogen for several years before the slowly moving legal processes can bring the situation under control. The story is interesting from another standpoint, proving that what the public is asked to accept as "safe" today may turn out tomorrow to be extremely dangerous.

When this chemical was introduced in 1955, the manufacturer applied for a tolerance which would sanction the presence of small residues on any crops that might be sprayed. As required by law, he had tested the chemical on laboratory animals and submitted the results with his application. However, scientists of the Food and Drug Administration interpreted the tests as showing a possible cancer-producing tendency and the Commissioner accordingly recommended a "zero tolerance," which is a way of saying that no residues could legally occur on food shipped across state lines. But the manufacturer had the legal right to appeal and the case was accordingly reviewed by a committee. The committee's decision was a compromise: a tolerance of 1 part per million was to be established and the product marketed for two years, during which time further laboratory tests were to determine whether the chemical was actually a carcinogen.

Other books

My Wolf's Bane by Veronica Blade
Pale Horse Coming by Stephen Hunter
Laura by George Sand
Organized to Death by Jan Christensen
A Bad Enemy by Sara Craven
The Girls' Revenge by Phyllis Reynolds Naylor
Goblin Quest by Philip Reeve