The Beginning of Infinity: Explanations That Transform the World (10 page)

BOOK: The Beginning of Infinity: Explanations That Transform the World
10.81Mb size Format: txt, pdf, ePub

Imagine that a flock of birds from a species that evolved on one island happens to fly to another. Their wings and eyes still work. That is an example of the reach of those adaptations. It has an explanation, the essence of which is that wings and eyes exploit universal laws of physics (of aerodynamics and optics respectively). They exploit those laws only imperfectly; but the atmospheric and lighting conditions on the two islands are sufficiently similar, by the criteria defined by those laws, for the same adaptations to work on both.

Thus the birds may well be able to fly to an island many kilometres away horizontally, but if they were transported only a few kilometres upwards their wings would stop working because the density of the air would be too low. Their implicit knowledge about how to fly fails at high altitude. A little further up, their eyes and other organs would stop working. The design of these too does not have that much reach: all vertebrate eyes are filled with liquid water, but water freezes at stratospheric temperatures and boils in the vacuum of space. Less dramatically, the birds might also die if they merely had no good night vision and they reached an island where the only suitable prey organisms were nocturnal. For the same reason, biological adaptations also have limited reach in regard to changes in their
home
environment – which can and do cause extinctions.

If those birds’ adaptations do have enough reach to make the species viable on the new island, they will set up a colony there. In subsequent generations, mutants slightly better adapted to the new island will end up having slightly more offspring on average, so evolution will adapt the population more accurately to contain the knowledge needed to make a living there. The ancestor species of humans colonized new habitats and embarked on new lifestyles in exactly that way. But by the time our species had evolved, our fully human ancestors were achieving much the same thing thousands of times faster, by evolving their cultural knowledge instead. Because they did not yet know how to do science, their knowledge was only a little less parochial than biological knowledge. It consisted of rules of thumb. And so progress, though rapid compared to biological evolution, was sluggish compared to what the Enlightenment has accustomed us to.

Since the Enlightenment, technological progress has depended specifically on the creation of explanatory knowledge. People had dreamed for millennia of flying to the moon, but it was only with the advent of Newton’s theories about the behaviour of invisible entities such as forces and momentum that they began to understand what was needed in order to go there.

This increasingly intimate connection between
explaining
the world and
controlling
it is no accident, but is part of the deep structure of the world. Consider the set of all conceivable transformations of physical objects. Some of those (like faster-than-light communication)
never happen because they are forbidden by laws of nature; some (like the formation of stars out of primordial hydrogen) happen spontaneously; and some (such as converting air and water into trees, or converting raw materials into a radio telescope) are possible, but happen only when the requisite knowledge is present – for instance, embodied in genes or brains. But those are the only possibilities. That is to say, every putative physical transformation, to be performed in a given time with given resources or under any other conditions, is either

– impossible because it is forbidden by the laws of nature; or

– achievable, given the right knowledge.

That momentous dichotomy exists because if there were transformations that technology could never achieve regardless of what knowledge was brought to bear, then this fact would itself be a testable regularity in nature. But all regularities in nature have explanations, so the explanation of that regularity would itself be a law of nature, or a consequence of one. And so, again, everything that is not forbidden by laws of nature is achievable, given the right knowledge.

This fundamental connection between explanatory knowledge and technology is why the Haldane–Dawkins queerer-than-we-can-suppose argument is mistaken – why the reach of human adaptations does have a different character from that of all the other adaptations in the biosphere. The ability to create and use explanatory knowledge gives
people
a power to transform nature which is ultimately not limited by parochial factors, as all other adaptations are, but only by universal laws. This is the cosmic significance of explanatory knowledge – and hence of people, whom I shall henceforward define as entities that can create explanatory knowledge.

For every other species on Earth, we can determine its reach simply by making a list of all the resources and environmental conditions on which its adaptations depend. In principle one could determine those from a study of its DNA molecules – because that is where all its genetic information is encoded (in the form of sequences of small constituent molecules called ‘bases’). As Dawkins has pointed out:

A gene pool is carved and whittled through generations of ancestral natural selection to fit [a particular] environment. In theory a knowledgeable zoologist, presented with the complete transcript of a genome [the
set of all the genes of an organism], should be able to reconstruct the environmental circumstances that did the carving. In this sense the DNA is a coded description of ancestral environments.

In Art Wolfe,
The Living Wild
, ed. Michelle A. Gilders (2000)

To be precise, the ‘knowledgeable zoologist’ would be able to reconstruct only those aspects of the organism’s ancestral environment that exerted selection pressure – such as the types of prey that existed there, what behaviours would catch them, what chemicals would digest them and so on. Those are all regularities in the environment. A genome contains coded descriptions of them, and hence implicitly specifies the environments in which the organism can survive. For example, all primates require vitamin C. Without it, they fall ill and die of the disease scurvy, but their genes do not contain the knowledge of how to synthesize it. So, whenever any non-human primate is in an environment that does not supply vitamin C for an extended period, it dies. Any account that overlooks this fact will overestimate the reach of those species. Humans are primates, yet
their
reach has nothing to do with which environments supply vitamin C. Humans can create and apply new knowledge of how to cause it to be synthesized from a wide range of raw materials, by agriculture or in chemical factories. And, just as essentially, humans can discover for themselves that, in most environments, they
need
to do that in order to survive.

Similarly, whether humans could live entirely outside the biosphere – say, on the moon – does not depend on the quirks of human biochemistry. Just as humans currently cause over a tonne of vitamin C to appear in Oxfordshire every week (from their farms and factories), so they could do the same on the moon – and the same goes for breathable air, water, a comfortable temperature and all their other parochial needs. Those needs can all be met, given the right knowledge, by transforming other resources. Even with present-day technology, it would be possible to build a self-sufficient colony on the moon, powered by sunlight, recycling its waste, and obtaining raw materials from the moon itself. Oxygen is plentiful on the moon in the form of metal oxides in moon rock. Many other elements could easily be extracted too. Some elements are rare on the moon, and so in practice these would be supplied from the Earth, but in principle the colony could be entirely independent of the Earth if it sent robot space vehicles
to mine asteroids for such elements, or if it manufactured them by transmutation.

I specified
robot
space vehicles because all technological knowledge can eventually be implemented in automated devices. This is another reason that ‘one per cent inspiration and ninety-nine per cent perspiration’ is a misleading description of how progress happens:
the ‘perspiration’ phase can be automated
– just as the task of recognizing galaxies on astronomical photographs was. And the more advanced technology becomes, the shorter is the gap between inspiration and automation. The more this happens in the moon colony, the less human effort will be required to live there. Eventually the moon colonists will take air for granted, just as the people now living in Oxfordshire take for granted that water will flow if they turn on a tap. If either of those populations lacked the right knowledge, their environment would soon kill them.

We are accustomed to thinking of the Earth as hospitable and the moon as a bleak, faraway deathtrap. But that is how our ancestors would have regarded Oxfordshire, and, ironically, it is how I, today, would regard the primeval Great Rift Valley. In the unique case of humans, the difference between a hospitable environment and a deathtrap depends on what knowledge they have created. Once enough knowledge has been embodied in the lunar colony, the colonists can devote their thoughts and energies to creating even more knowledge, and soon it will cease to be a colony and become simply home. No one will think of the moon as a fringe habitat, distinguished from our ‘natural’ environment on Earth, any more than we now think of Oxfordshire as being fundamentally different from the Great Rift Valley as a place to live.

Using knowledge to cause automated physical transformations is, in itself, not unique to humans. It is the basic method by which all organisms keep themselves alive: every cell is a chemical factory. The difference between humans and other species is in what kind of knowledge they can use (explanatory instead of rule-of-thumb) and in how they create it (conjecture and criticism of ideas, rather than the variation and selection of genes). It is precisely those two differences that explain why every other organism can function only in a certain range of environments that are hospitable to it, while humans transform
in
hospitable environments like the biosphere into support systems for themselves. And, while every other organism is a factory for converting resources of a fixed type into more such organisms, human bodies (including their brains) are factories for transforming
anything into anything
that the laws of nature allow. They are ‘universal constructors’.

This universality in the human condition is part of a broader phenomenon that I shall discuss in
Chapter 6
. We do not share it with any other species currently on Earth. But, since it is a consequence of the ability to create explanations, we do necessarily share it with any other people that might exist in the universe. The opportunities provided by the laws of nature for transforming resources are universal, and all entities with universal reach necessarily have the same reach.

A few species other than humans are known to be capable of having cultural knowledge. For example, some apes can discover new methods of cracking nuts, and pass that knowledge on to other apes. As I shall discuss in
Chapter 16
, the existence of such knowledge is suggestive of how ape-like species evolved into people. But it is irrelevant to the arguments of this chapter, because no such organism is capable of creating or using explanatory knowledge. Hence the cultural knowledge of such organisms is of essentially the same type as genetic knowledge, and does indeed have only a small and inherently limited reach. They are not universal constructors, but highly specialized ones. For them, the Haldane–Dawkins argument is valid: the world is stranger than they can conceive.

In some environments in the universe, the most efficient way for humans to thrive might be to alter their own genes. Indeed, we are already doing that in our present environment, to eliminate diseases that have in the past blighted many lives. Some people object to this on the grounds (in effect) that a genetically altered human is no longer human. This is an anthropomorphic mistake. The only uniquely significant thing about humans (whether in the cosmic scheme of things or according to any rational human criterion) is our ability to create new explanations, and we have that in common with all people. You do not become less of a person if you lose a limb in an accident; it is only if you lose your brain that you do. Changing our genes in order to improve our lives and to facilitate further improvements is no different in this regard from augmenting our skin with clothes or our eyes with telescopes.

One might wonder whether the reach of people in general might be greater than the reach of humans. What if, for instance, the reach of technology is indeed unlimited, but only to creatures with two opposable thumbs on each hand; or if the reach of scientific knowledge is unlimited, but only to beings whose brains are twice the size of ours? But our faculty of being universal constructors makes these issues as irrelevant as that of access to vitamins. If progress at some point were to depend on having two thumbs per hand, then the outcome would depend not on the knowledge we inherit in our genes, but on whether we could discover how to build robots, or gloves, with two thumbs per hand, or alter ourselves to have a second thumb. If it depends on having more memory capacity, or speed, than a human brain, then the outcome would depend on whether we could build computers to do the job. Again, such things are already commonplace in technology.

The astrophysicist Martin Rees has speculated that somewhere in the universe ‘there could be life and intelligence out there in forms we can’t conceive. Just as a chimpanzee can’t understand quantum theory, it could be there are aspects of reality that are beyond the capacity of our brains.’ But that cannot be so. For if the ‘capacity’ in question is mere computational speed and amount of memory, then we can understand the aspects in question with the help of computers – just as we have understood the world for centuries with the help of pencil and paper. As Einstein remarked, ‘My pencil and I are more clever than I.’ In terms of computational repertoire, our computers – and brains – are already universal (see
Chapter 6
). But if the claim is that we may be
qualitatively
unable to understand what some other forms of intelligence can – if our disability cannot be remedied by mere automation – then this is just another claim that the world is not explicable. Indeed, it is tantamount to an appeal to the supernatural, with all the arbitrariness that is inherent in such appeals, for if we wanted to incorporate into our world view an imaginary realm explicable only to superhumans, we need never have bothered to abandon the myths of Persephone and her fellow deities.

Other books

Thunder Canyon Homecoming by Brenda Harlen
First Person by McGarrity, Eddie
Apartment 7C by David Bernstein
Fools' Gold by Philippa Gregory
Forgotten by Kailin Gow
Tango by Mike Gonzalez
Murder and Mayhem by D P Lyle