The Book of the Damned (6 page)

Read The Book of the Damned Online

Authors: Charles Fort

BOOK: The Book of the Damned
12.73Mb size Format: txt, pdf, ePub

There is, in human intellection, no real standard to judge by, but our acceptance, for the present, is that the more nearly positive will prevail. By the more nearly positive we mean the more nearly organized. Everything merges away into everything else, but proportionately to its complexity, if unified, a thing seems strong, real, and distinct: so, in aesthetics, it is recognized that diversity in unity is higher beauty, or approximation to Beauty, than is simpler unity; so the logicians feel that agreement of diverse data constitute greater convincingness, or strength, than that of mere parallel instances: so to Herbert Spencer the more highly differentiated and integrated is the more fully evolved. Our opponents hold out for mundane origin of all black rains. Our method will be the presenting of diverse phenomena in agreement with the notion of some other origin. We take up not only black rains but black rains and their accompanying phenomena.

A correspondent to
Knowledge,
5-190, writes of a black rain that fell in the Clyde Valley, March 1, 1884: of another black rain that fell two days later. According to the correspondent, a black rain had fallen in the Clyde Valley, March 20, 1828: then again March 22, 1828. According to
Nature,
9-43, a black rain fell at Marlsford, England, Sept. 4, 1873; more than twenty-four hours later another black rain fell in the same small town.

The black rains of Slains:

According to Rev. James Rust
(Scottish Showers):

A black rain at Slains, Jan. 14, 1862—another at Carluke, 140 miles from Slains, May 1, 1862—at Slains, May 20, 1862—Slains, Oct. 28, 1863.

But after two of these showers, vast quantities of a substance described sometimes as “pumice stone,” but sometimes as “slag,” were washed upon the sea coast near Slains. A chemist’s opinion is given that this substance was slag: that it was not a volcanic product: slag from smelting works. We now have, for black rains, a concomitant that is irreconcilable with origin from factory chimneys. Whatever it may have been the quantity of this substance was so enormous that, in Mr. Rust’s opinion, to have produced so much of it would have required the united output of all the smelting works in the world. If slag it were, we accept that an artificial product has, in enormous quantities, fallen from the sky. If you don’t think that such occurrences are damned by Science, read
Scottish Showers
and see how impossible it was for the author to have this matter taken up by the scientific world.

The first and second rains corresponded, in time, with ordinary ebullitions of Vesuvius.

The third and fourth, according to Mr. Rust, corresponded with no known volcanic activities upon this earth.

La Science Pour Tons,
11-26:

That, between October, 1863, and January, 1866, four more black rains fell at Slains, Scotland.

The writer of this supplementary account tells us, with a better, or more unscrupulous, orthodoxy than Mr. Rust’s, that of the eight black rains, five coincided with eruptions of Vesuvius and three with eruptions of Etna.

The fate of all explanation is to close one door only to have another fly wide open. I should say that my own notions upon this subject will be considered irrational, but at least my gregariousness is satisfied in associating here with the preposterous—or this writer, and those who think in his rut, have to say that they can think of four discharges from one far-distant volcano, passing over a great part of Europe, precipitating nowhere else, discharging precisely over one small northern parish—

But also of three other discharges, from another far-distant volcano, showing the same precise preference, if not marksmanship, for one small parish in Scotland.

Nor would orthodoxy be any better off in thinking of exploding meteorites and their débris: preciseness and recurrence would be just as difficult to explain.

My own notion is of an island near an oceanic trade-route: it might receive débris from passing vessels seven times in four years.

Other concomitants of black rains:

In Timb’s
Year Book,
1851-270, there is an account of “a sort of rumbling, as of wagons, heard for upward of an hour without ceasing,” July 16, 1850, Bulwick Rectory, Northampton, England. On the 19th, a black rain fell.

In
Nature,
30-6, a correspondent writes of an intense darkness at Preston, England, April 26, 1884: page 32, another correspondent writes of black rain at Crowle, near Worcester, April 26: that a week later, or May 3, it had fallen again: another account of black rain, upon the 28th of April, near Church Shetton, so intense that the following day brooks were still dyed with it. According to four accounts by correspondents to
Nature
there were earthquakes in England at this time.

Or the black rain of Canada, Nov. 9, 1819. This time it is orthodoxy to attribute the black precipitate to smoke of forest fires south of the Ohio River—

Zurcher,
Meteors,
p. 238:

That this black rain was accompanied by “shocks like those of an earthquake.”

Edinburgh Philosophical Journal,
2-381:

That the earthquake had occurred at the climax of intense darkness and the fall of black rain.

###

Red rains.

Orthodoxy:

Sand blown by the sirocco, from the Sahara to Europe.

Especially in the earthquake regions of Europe, there have been many falls of red substance, usually, but not always, precipitated in rain. Upon many occasions, these substances have been “absolutely identified” as sand from the Sahara. When I first took this matter up, I came across assurance after assurance, so positive to this effect, that, had I not been an Intermediatist, I’d have looked no further. Samples collected from a rain at Genoa—samples of sand forwarded from the Sahara—“absolute agreement” some writers said: same color, same particles of quartz, even the same shells of diatoms mixed in. Then the chemical analyses: not a disagreement worth mentioning.

Our Intermediatist means of expression will be that, with proper exclusions, after the scientific or theological method, anything can be identified with anything else, if all things are only different expressions of an underlying oneness.

To many minds there’s rest and there’s satisfaction in that expression “absolutely identified.” Absoluteness, or the illusion of it—the universal quest. If chemists have identified substances that have fallen in Europe as sand from African deserts, swept up in African whirlwinds, that’s assuasive to all the irritations that occur to those cloistered minds that must repose in the concept of a snug, isolated, little world, free from contact with cosmic wickednesses, safe from stellar guile, undisturbed by interplanetary prowlings and invasions. The only trouble is that a chemist’s analysis, which seems so final and authoritative to some minds, is no more nearly absolute than is identification by a child or description by an imbecile—

I take some of that back: I accept that the approximation is higher—

But that it’s based upon delusion, because there is no definiteness, no homogeneity, no stability, only different stages somewhere between them and indefiniteness, heterogeneity, and instability. There are no chemical elements. It seems acceptable that Ramsay and others have settled that. The chemical elements are only another disappointment in the quest for the positive, as the definite, the homogeneous, and the stable. If there were real elements, there could be a real science of chemistry.

Upon Nov. 12 and 13, 1902, occurred the greatest fall of matter in the history of Australia. Upon the 14th of November, it “rained mud,” in Tasmania. It was of course attributed to Australian whirlwinds, but, according to the
Monthly Weather Review,
32-365, there was a haze all the way to the Philippines, also as far as Hong Kong. It may be that this phenomenon had no especial relation with the even more tremendous fall of matter that occurred in Europe, February, 1903.

For several days, the south of England was a dumping ground—from somewhere.

If you’d like to have a chemist’s opinion, even though it’s only a chemist’s opinion, see the report of the meeting of the Royal Chemical Society, April 2, 1903. Mr. E.G. Clayton read a paper upon some of the substance that had fallen from the sky, collected by him. The Sahara explanation applies mostly to falls that occur in southern Europe. Farther away, the conventionalists are a little uneasy: for instance, the Editor of the
Monthly Weather Review,
29-121, says of a red rain that fell near the coast of Newfoundland, early in 1890: “It would be very remarkable if this was Sahara dust.” Mr. Clayton said that the matter examined by him was “merely wind-borne dust from the roads and lanes of Wessex.” This opinion is typical of all scientific opinion—or theological opinion—or feminine opinion—all very well except for what it disregards. The most charitable thing I can think of—because I think it gives us a broader tone to relieve our malices with occasional charities—is that Mr. Clayton had not heard of the astonishing extent of this fall—had covered the Canary Islands, on the 19th, for instance. I think, myself, that in 1903, we passed through the remains of a powdered world—left over from an ancient interplanetary dispute, brooding in space like a red resentment ever since. Or, like every other opinion, the notion of dust from Wessex turns into a provincial thing when we look it over.

To think is to conceive incompletely, because all thought relates only to the local. We metaphysicians, of course, like to have the notion that we think of the unthinkable.

As to opinions, or pronouncements, I should say, because they always have such an authoritative air, of other chemists, there is an analysis in
Nature,
68-54, giving water and organic matter at 9.08 percent. It’s that carrying out of fractions that’s so convincing. The substance is identified as sand from the Sahara.

The vastness of this fall. In
Nature,
68-65, we are told that it had occurred in Ireland, too. The Sahara, of course—because, prior to February 19, there had been dust storms in the Sahara—disregarding that in that great region there’s always, in some part of it, a dust storm. However, just at present, it does look reasonable that dust had come from Africa, via the Canaries.

The great difficulty that authoritativeness has to contend with is some other authoritativeness. When an infallibility clashes with a pontification—

They explain.

Nature,
March 5, 1903:

Another analysis—36 percent organic matter.

Such disagreements don’t look very well, so, in
Nature,
68-109, one of the differing chemists explains. He says that his analysis was of muddy rain, and the other was of sediment of rain—

We’re quite ready to accept excuses from the most high, though I do wonder whether we’re quite so damned as we were, if we find ourselves in a gracious and tolerant mood toward the powers that condemn—but the tax that now comes upon our good manners and unwillingness to be too severe—

Nature,
68-223:

Another chemist. He says it was 23.49 percent water and organic matter.

He “identifies” this matter as sand from an African desert—but after deducting organic matter—

But you and I could be “identified” as sand from an African desert, after deducting all there is to us except sand—

Why we cannot accept that this fall was of sand from the Sahara, omitting the obvious objection that in most parts the Sahara is not red at all, but is usually described as “dazzling white”—

The enormousness of it: that a whirlwind might have carried it, but that, in that case it would be no supposititious, or doubtfully identified whirlwind, but the greatest atmospheric cataclysm in the history of this earth:

Jour. Roy. Met. Soc.,
30-56:

That, up to the 27th of February, this fall had continued in Belgium, Holland, Germany and Austria; that in some instances it was not sand, or that almost all the matter was organic: that a vessel had reported the fall as occurring in the Atlantic Ocean, midway between Southampton and the Barbados. The calculation is given that, in England alone, 10,000,000 tons of matter had fallen. It had fallen in Switzerland
(Symons’ Met. Mag.,
March, 1903). It had fallen in Russia
(Bull. Com. Geolog.,
22-48). Not only had a vast quantity of matter fallen several months before, in Australia, but it was at this time falling in Australia
(Victorian Naturalist,
June, 1903)—enormously—red mud—fifty tons per square mile.

The Wessex explanation—

Or that every explanation is a Wessex explanation: by that I mean an attempt to interpret the enormous in terms of the minute—but that nothing can be finally explained, because by Truth we mean the Universal; and that even if we could think as wide as Universality, that would not be requital to the cosmic quest—which is not for Truth, but for the local that is true—not to universalize the local, but to localize the universal—or to give to a cosmic cloud absolute interpretation in terms of the little dusty roads and lanes of Wessex. I cannot conceive that this can be done: I think of high approximation.

Our Intermediatist concept is that, because of the continuity of all “things,” which are not separate, positive, or real things, all pseudo-things partake of the underlying, or are only different expressions, degrees, or aspects of the underlying: so then that a sample from somewhere in anything must correspond with a sample from somewhere in anything else.

That, by due care in selection, and disregard for everything else, or the scientific and theological method, the substance that fell, February, 1903, could be identified with anything, or with some part or aspect of anything that could be conceived of—

With sand from the Sahara, sand from a barrel of sugar, or dust of your great-great-grandfather.

Different samples are described and listed in the
Journal of the Royal Meteorological Society,
30-57—or we’ll see whether my notion that a chemist could have identified some one of these samples as from anywhere conceivable, is extreme or not:

“Similar to brick dust,” in one place; “buff or light brown,” in another place; “chocolate-colored and silky to the touch and slightly iridescent”; “gray”; “red-rust color”; “reddish raindrops and gray sand”; “dirty gray”; “quite red”; “yellow-brown, with a tinge of pink”; “deep yellow-clay color.”

Other books

Kiki and Jacques by Susan Ross
Harmonic Feedback by Tara Kelly
Sweet Deception (Truth) by Henderson, Grace
Conquering Kilmarni by Cave, Hugh
Cheating Justice (The Justice Team) by Misty Evans, Adrienne Giordano
In Her Shadow by August McLaughlin
Better Than Gold by Mary Brady
The Vulture by Frederick Ramsay