The Magic of Reality (15 page)

Read The Magic of Reality Online

Authors: Richard Dawkins

BOOK: The Magic of Reality
4.69Mb size Format: txt, pdf, ePub

Sodium is just one example. You’ll remember from Chapter 4 that every element has its own unique ‘atomic number’, which is the number of protons in its nucleus (and also the number of electrons orbiting it). Well, for reasons connected with the orbits of its electrons, every element also has its own unique effect upon light. Unique like a barcode … in fact, a barcode is pretty much what the pattern of lines in the spectrum of starlight is. You can tell which of the 92 naturally occurring elements are present in a star by spreading the star’s light out in a spectroscope and looking at the barcode lines in the spectrum.

Since every element has a different barcode pattern, we can look at the light from any star and see which elements are present in that star. Admittedly, it is quite tricky because the barcodes of several different elements are likely to be muddled up together. But there are ways of sorting them out. What a wonderful tool the spectroscope is!

It gets even better. The sodium spectrum we would measure in light from a Salisbury street lamp is the same as that from a star that is not very far away. Most of the stars we see – for example, the stars in the well-known constellations
of
the zodiac – are in our own galaxy. But if you look at the sodium spectrum from a star in a different galaxy, you get a fascinatingly different picture. Sodium light from the distant galaxy has the same pattern of bars, spaced the same distance from each other. But the whole pattern is shifted towards the red end of the spectrum. How do we know it is still sodium, then? The answer is because the pattern of spacing between the bars is the same. That might not seem totally convincing if it only happened with sodium. But the same thing happens with all the elements. In every case we see the same spacing pattern, characteristic of the element concerned, but shifted bodily along the spectrum towards the red end. What’s more, for any given galaxy, all the barcodes are shifted the same distance along the spectrum.

If you look at the sodium barcode in light from a galaxy that is somewhat close to ours – closer than the very distant galaxies I talked about in the previous paragraph but further away than the stars in our own Milky Way galaxy – you see an intermediate shift. You see the same spacing pattern, which is the signature of sodium, but not shifted so far. The first line is shifted along the spectrum away from deep blue, but not as far as green: only as far as light blue. And the yellow line responsible for the yellow colour of the Salisbury street lamps is shifted in the same direction, towards the red end of the spectrum, but not all the way into the red as it is in light from the distant galaxy: only a little way into the orange.

Sodium is just one example. Any other element shows the same shift along the spectrum in the red direction. The
more
distant the galaxy, the greater the shift towards the red. This is called the ‘Hubble shift’, because it was discovered by the great American astronomer Edwin Hubble, who also gave his name, after his death, to the Hubble telescope. It is also called a ‘red shift’, because the shift is along the spectrum in the direction of red.

Backwards to the big bang

What does the red shift mean? Fortunately, scientists understand it well. It is an example of what is called a ‘Doppler shift’. Doppler shifts can happen wherever we have waves – and light, as we saw in the previous chapter, consists of waves. It’s often called the ‘Doppler effect’ and it is more familiar to us from sound waves. When you are standing at a roadside watching the cars whizz by at high speed, the sound of every car’s engine seems to drop in pitch as it passes you. You know the car’s engine note really stays the same, so why does the pitch seem to drop? The answer is the Doppler shift, and the explanation for it is as follows.

Sound travels through the air as waves of changing air pressure. When you listen to the note of a car engine – or let’s say a trumpet, because it is more pleasant than an engine – sound waves travel through the air in all directions from the source of the sound. Your ear happens to lie in one of those directions, it picks up the changes in air pressure produced by the trumpet, and your brain hears them as sound. Don’t imagine molecules of air flowing from the trumpet all the way to your ear. It isn’t like that at all: that would be a wind, and winds travel in one direction only, whereas sound waves travel
outwards
in all directions, like the waves on the surface of a pond when you drop a pebble in.

The easiest kind of wave to understand is the so-called Mexican Wave, in which people in a large sports stadium stand up and then sit down again in order, each person doing so immediately after the person on one side of them (say their left side). A wave of standing and then sitting moves swiftly around the stadium. Nobody actually moves from their place, yet the wave travels. Indeed, the wave travels far faster than anybody could run.

What travels in the pond is a wave of changing height in the surface of the water. The thing that makes it a wave is that the water molecules themselves are not rushing outwards from the pebble. The water molecules are just going up and down, like the people in the stadium. Nothing really travels outwards from the pebble. It only looks like that because the high points and low points of the water move outwards.

Sound waves are a bit different. What travels in the case of sound is a wave of changing air pressure. The air molecules move a little bit, to and fro, away from the trumpet, or whatever is the source of the sound, and back again. As they do so, they knock against neighbouring air molecules and set them moving backwards and forwards too. Those in turn knock against their neighbours and the result is that a wave of molecule-knocking – which amounts to a wave of changing pressure – travels outwards from the trumpet in all directions. And it is the wave that travels from the trumpet to your ear, not the air molecules themselves. The wave travels at a fixed speed, regardless of whether the source of the sound is a
trumpet
or a speaking voice or a car: about 768 miles per hour in air (four times faster under water, and even faster in some solids). If you play a higher note on your trumpet, the speed at which the waves travel remains the same, but the distance between the wave crests (the
wavelength
) becomes shorter. Play a low note, and the wave crests space out more but the wave still travels at the same speed. So high notes have a shorter wavelength than low ones.

That is what sound waves are. Now for the Doppler shift. Imagine that a trumpeter standing on a snow-covered hillside plays a long, sustained note. You get on a toboggan and speed past the trumpeter (I chose a toboggan rather than a car because it is quiet, so you can hear the trumpet). What will you hear? The successive wave crests leave the trumpet at a definite distance from each other, defined by the note the trumpeter chose to play. But when you are whizzing towards the trumpeter, your ear will gobble up the successive wave crests at a higher rate than if you were standing still on the hilltop. So the trumpet’s note will sound higher than it really is. Then, after you have whizzed past the trumpeter, your ear will hit the successive wave crests at a lower rate (they’ll seem more spaced out, because each wave crest is travelling in the same direction as your toboggan), so the apparent pitch of the note will be lower than it really is. The same thing works if your ear is still and the source of the sound moves. It is said (I don’t know whether it is true, but it is a nice story) that Christian Doppler, the Austrian scientist who discovered the effect, hired a brass band to play on an open railway truck, in order to demonstrate it. The tune the band was playing
suddenly
dropped into a lower key as the train puffed past the amazed audience.

Light waves are different again – not really like a Mexican Wave and not really like sound waves. But they do have their own version of the Doppler effect. Remember that the red end of the spectrum has a longer wavelength than the blue end, with green in the middle. Suppose the bandsmen on Christian Doppler’s railway truck are all wearing yellow uniforms. As the train speeds towards you, your eyes ‘gobble up’ the wave crests at a faster rate than they would if the train was still. So there is a slight shift in the colour of the uniform towards the green part of the spectrum. Now, when the train goes past you and is speeding away from you, the opposite happens, and the band uniforms appear slightly redder.

There’s only one thing wrong with this illustration. In order for you to notice the blue shift or the red shift, the train would have to be travelling at millions of miles per hour. Trains don’t travel anywhere near fast enough for the Doppler effect on colour to be noticed. But galaxies do. The shift of the spectrum towards the red end shows that very distant galaxies are travelling away from us at a rate of hundreds of millions of miles per hour. And the key point is that the more distant they are (as measured by the ‘standard candles’ mentioned before), the faster they are travelling away from us (the greater the red shift).

All the galaxies in the universe are rushing away from each other, which means that they are rushing away from us too. It doesn’t matter which direction you point your telescope in, the more distant galaxies are moving away from
us
(and from one another) at ever-increasing speed. The entire universe – space itself – is expanding at a colossal rate.

In that case, you might ask, why is it only at the level of galaxies that space is seen to expand? Why don’t the stars within a galaxy rush away from each other? Why aren’t you and I rushing away from each other? The answer is that clusters of things that are close to each other, like everything in a galaxy, feel the strongest pull from the gravity of their neighbours. This holds them together, while distant objects – other galaxies – recede with the expansion of the universe.

And now here is something amazing. Astronomers have looked at the expansion and worked backwards through time. It is as though they constructed a movie of the expanding universe, with the galaxies rushing apart, and then ran the film in reverse. Instead of hurtling away from each other, in the backwards film the galaxies converge. And from that film the astronomers can calculate back to the moment when the expansion of the universe must have begun. They can even calculate when that moment was. That’s how they know it was somewhere between 13 and 14 billion years ago. That was the moment when the universe itself began – the moment called the ‘big bang’.

Today’s ‘models’ of the universe assume that it wasn’t only the universe that began with the big bang: time itself and space itself began with the big bang too. Don’t ask me to explain that, because, not being a cosmologist, I don’t understand it myself. But perhaps you can now see why I nominated
the
spectroscope as one of the most important inventions ever. Rainbows are not just beautiful to look at. In a way, they tell us when everything began, including time and space. I think that makes the rainbow even more beautiful.

9

A
RE WE
ALONE?

 

SO FAR AS
I know there are few, if any, ancient myths about alien life elsewhere in the universe, perhaps because the very idea of there being a universe vastly bigger than our own world hasn’t been around all that long. It took until the 1500s for scientists to see clearly that the Earth orbits the sun, and that there are other planets that do so too. But the distance and number of the stars, let alone other galaxies, were unknown and undreamed of until relatively modern times. And it isn’t that long since people first realized that the direction we call straight up in one part of the world (for example Borneo) would be straight down in another part of the world (in this case Brazil). Before then, people thought that ‘up’ was the same direction everywhere, towards the place where the gods lived, ‘above’ the sky.

There have long been numerous legends and beliefs about strange alien creatures near at hand: demons, spirits,
djinns
, ghosts … the list goes on. But in this chapter when I ask ‘Are we alone?’ I am going to mean ‘Are there alien life forms on other worlds elsewhere in the universe?’ As I said, myths about aliens in this sense are rare among primitive tribes. They are all too common, however, among modern
city
dwellers. These modern myths are interesting because, unlike ancient myths, we can actually watch as they start. We see myths being dreamed up before our very eyes. So the myths in this chapter will be modern.

In California in March 1997 a religious cult called Heaven’s Gate came to a sad end when all 39 of its members took poison. They killed themselves because they believed that a UFO from outer space would take their souls to another world. At the time a bright comet called Hale–Bopp was prominent in the sky and the cult believed – because their spiritual leader told them so – that an alien spacecraft was accompanying the comet on its journey. They bought a telescope to observe it, but then sent it back to the shop because it ‘didn’t work’. How did they know it didn’t work? Because they couldn’t see the spacecraft through it!

Did the cult leader, a man called Marshall Applewhite, believe the nonsense he taught his followers? Probably he did, because he was one of those who took the poison, so it looks as though he was sincere! Many cult leaders are in the business only so they can take possession of their female followers, but Marshall Applewhite was one of several cult members who had earlier had themselves castrated, so perhaps sex was not uppermost in his mind.

One thing most such people seem to have in common is a love of science fiction. The members of the Heaven’s Gate cult were obsessed with
Star Trek
. Of course, there is no shortage of science fiction stories about aliens from other planets, but most of us know that’s just what they are: fiction, imagined, invented stories, not accounts of things that
actually
happened. But there are quite a lot of people who firmly, sincerely and unshakeably believe that they have personally been captured (‘abducted’) by aliens from outer space. So eager are they to believe this that they will do so on the flimsiest of ‘evidence’.

One man, for instance, believed he had been abducted, for no better reason than that he often got nosebleeds. His theory was that the aliens had put a radio transmitter in his nose to spy on him. He also thought he might be part alien himself, on the grounds that his colouring was a little darker than his parents’. A surprisingly large number of Americans, many of them otherwise normal, sincerely believe that they personally have been taken aboard flying saucers and been the victims of horrific experiments conducted by little grey men with large heads and huge, wraparound eyes. There is a whole mythology of ‘alien abductions’, which is as rich, as colourful and as detailed as the mythology of ancient Greece and the gods of Mount Olympus. But these alien abduction myths are recent, and you can actually go and talk to people who believe they have been abducted: apparently normal, sane, level-headed people, who will tell you they saw the aliens face to face; actually tell you what the aliens look like, and what they say while performing their nasty experiments and sticking needles into people (the aliens speak English, of course!).

Susan Clancy is one of several psychologists who have made detailed studies of people who claim to have been abducted. Not all of them have clear memories, or even any memories at all, of the ‘event’. They account for this by saying
that
obviously the aliens must have used some devilish technique to wipe their memories clean after they had finished experimenting on their bodies. Sometimes they go to a hypnotist, or a psychotherapist of some kind, who helps them to ‘recover their lost memories’.

Recovering ‘lost’ memory is a whole other story, by the way, which is interesting in its own right. When we think we remember a real incident, we may only be remembering another memory … and so on back to what may or may not have been a real incident originally. Memories of memories of memories can become progressively distorted. There is good evidence that some of our most vivid memories are actually
false
memories. And false memories can be deliberately planted by unscrupulous ‘therapists’.

False memory syndrome helps us understand why at least some of the people who think they have been abducted by aliens claim to have such vivid memories of the incident. What usually happens is that a person becomes obsessed with aliens through reading stories in the newspapers about other alleged abductions.

Often, as I said, these people are fans of
Star Trek
, or other science fiction tales. It is a striking fact that the aliens they think they’ve met usually look very like the ones portrayed in the most recent television fiction about aliens, and they usually do the same kind of ‘experiments’ as have recently been seen on television.

The next thing that may happen is that the person is afflicted by a frightening experience called sleep paralysis. It is not uncommon. You may even have experienced it yourself, in
which
case I hope it will be a bit less scary the next time it happens if I explain it to you now. Normally, when you are asleep and dreaming, your body is paralysed. I suppose it’s to stop your muscles working in tune with your dreams and making you sleepwalk (though this does, of course, sometimes happen). And normally, when you wake and your dream vanishes, the paralysis goes and you can move your muscles.

But occasionally there is a delay between your mind returning to consciousness and your muscles coming back to life, and that is called sleep paralysis. It is frightening, as you can imagine. You are sort of awake, and you can see your bedroom and everything in it, but you can’t move. Sleep paralysis is often accompanied by terrifying hallucinations. People feel surrounded by a sense of dreadful danger, which they can’t put a name to. Sometimes they even see things that are not there, just as in a dream. And, also as in a dream, to the dreamer they seem absolutely real.

Now, if you are going to have a hallucination when you suffer sleep paralysis, what might that hallucination look like? A modern science fiction fan might well see little grey men with big heads and huge eyes. In earlier centuries, before science fiction came along, the visions people saw were different: hobgoblins, perhaps, or werewolves; bloodsucking vampires or (if they were lucky) beautiful winged angels.

The point is that the images people see when experiencing sleep paralysis are not really there but are conjured up in the mind from past fears, legends or fiction. Even if they don’t hallucinate, the experience is so frightening that, when they
finally
wake up, sleep paralysis victims often believe that something horrible has happened to them. If you are primed to believe in vampires, you might wake with a strong belief that a bloodsucker has attacked you. If I am primed to believe in alien abductions I might wake up believing that I was abducted and my memory then wiped clean by aliens.

The next thing that typically happens to sleep paralysis victims is that, even if they didn’t actually hallucinate aliens and gruesome experiments at the time, their fearful reconstruction of what they suspect may have happened becomes consolidated as a false memory. This process is often helped along by friends and family, who eagerly pump them for more and more detailed accounts of what happened, and even prompt them with leading questions: ‘Were there aliens there? What colour were they? Were they grey? Did they have big wraparound eyes like in the movies?’ Even questions can be enough to implant or cement a false memory. When you look at it like this, it is not so surprising that a 1992 poll concluded that nearly four million Americans thought they had been abducted by aliens.

My friend the psychologist Sue Blackmore points out that sleep paralysis was the most likely cause of earlier imagined horrors, too, before the idea of space aliens became popular. In medieval times people claimed to have been visited in the middle of the night by an ‘incubus’ (a male demon visiting a female victim to have sex with her) or a ‘succubus’ (a female demon visiting a male victim to have sex with him). One of the effects of sleep paralysis is that, if you try to move, it feels as though something is pressing down on
your
body. This could easily be interpreted by the terrified victim as a sexual assault. Legend in Newfoundland talks of an ‘Old Hag’ who visits people in the night and presses down on their chests. And there is a legend in Indochina of a ‘Grey Ghost’ who visits people in the dark and paralyses them.

So we have a good understanding of why people believe they have been abducted by aliens, and we can tie the modern myths of alien abduction in with earlier myths of rapacious incubi and succubi, or of vampires with long canine teeth who visit in the night and suck our blood. There is no good evidence at all that this planet has ever been visited by aliens from outer space (or, for that matter, by incubi or succubi or demons of any kind). But we are still left with the question of whether there actually are living things on other planets. Just because they haven’t visited us doesn’t mean they don’t exist. Could the same process of evolution, or even a very different process that perhaps resembles our kind of evolution only slightly, have got going on other planets as well as ours?

Is there really life on other planets?

Nobody knows. If you forced me to give an opinion one way or the other, I’d say yes, and probably on millions of planets. But who cares about an opinion? There is no direct evidence. One of the great virtues of science is that scientists know when they don’t know the answer to something. They cheerfully admit that they don’t know. Cheerfully, because not knowing the answer is an exciting challenge to try to find it.

One day we may have definite evidence of life on other planets, and then we’ll know for sure. For now, the best a
scientist
can do is write down the kind of information that might reduce the uncertainty, might take us from guesswork to an estimate of likelihood. And that, in itself, is an interesting and challenging thing to do.

The first thing we might ask is how many planets there are. Until quite recently, it was possible to believe that the ones orbiting our sun were the only ones, because planets could not be detected by even the largest telescopes. Nowadays we have good evidence that lots of stars have planets, and new ‘extra-solar’ planets are discovered almost every day. An extra-solar planet is a planet orbiting a star other than the sun (
sol
is the Latin for sun and
extra
is the Latin for outside).

You might think that the obvious way to detect a planet is to see it through a telescope. Unfortunately, planets are too dim to be seen at any great distance – they don’t glow in their own right but only reflect their star’s light – so we can’t see them directly. We have to rely on indirect methods, and the best method again makes use of the spectroscope, the instrument we met in Chapter 8. Here’s how.

When a heavenly body orbits another one of approximately equal size, they orbit each other, because they exert approximately equal gravitational force on each other. Several of the bright stars that we see when we look up are actually two stars – so-called binaries – in orbit around each other like the two ends of a dumbbell connected by an invisible rod. When one body is much smaller than the other, as is the case with a planet and its star, the smaller one whizzes around the larger one, while the larger one makes only little token movements in response to the gravitational pull of the
smaller
. We say that Earth orbits the sun, but actually the sun also makes tiny movements in response to the gravity of Earth.

And a planet as large as Jupiter can have an appreciable effect on the position of its star. These token movements of a star are too small to count as ‘going round’ the planet, but they are large enough to be detected by our instruments, even though we can’t see the planet at all.

How we detect these movements is interesting in its own right. Any star is too far away for us to be able to see it actually moving, even with a powerful telescope. But, strangely, although we can’t see a star move, we can measure the speed with which it does so. That sounds odd, but this is where the spectroscope comes in. Remember the Doppler shift from Chapter 8? When the star’s movement happens to be away from us, the light from it will be red-shifted. When the star’s movement is towards us its light will be blue-shifted. So, if a star has an orbiting planet, the spectroscope will show us a rhythmically pulsating red-blue-red-blue shift pattern, and the timing of these regular shifts will tell us the length of the planet’s year. Of course it’s complicated when there’s more than one planet. But astronomers are good at mathematics and they can cope with that complication. At the time of writing (May 2012) 701 planets have been detected by this means, orbiting 559 stars. There will surely be more by the time you read this.

There are other methods of detecting planets. For example, when a planet passes across the face of its star, a small portion of the face of the star is obscured or eclipsed –
like
when we see the moon eclipsing the sun, except that the moon looks much bigger because it is so much closer.

Other books

The One in My Heart by Sherry Thomas
Stealing Grace by Shelby Fallon
Darcy's Utopia by Fay Weldon
Her Secret Fantasy by Gaelen Foley
The Meeting Point by Tabitha Rayne
Love and Other Games by Ana Blaze, Melinda Dozier, Aria Kane, Kara Leigh Miller
April Adventure by Ron Roy