Read The Powerhouse: Inside the Invention of a Battery to Save the World Online
Authors: Steve LeVine
A
t times, the ferment of the 1960s seemed aimed at Argonne. Seeing their nuclear research stigmatized and budgets reduced, some people thought that Argonne’s existence was threatened. After a while, the lab director noticed “discouraged weariness in the eyes” of the scientists. Recalling his own time in Exxon’s research lab a few years back, the director reckoned that much of the gloom sprang not from the national politics but Argonne’s atmosphere—scientists were likelier to produce first-rate work if they were surrounded by first-rate facilities. He asked his wife to help. Before long, she had workers retiling and painting Building 205. They added lights in the public areas and gussied up the hitherto pale green offices with pinks, golds, and blues. The overall effect was a softer ambience, “a brand new building,” especially with the finishing touch of a jazz and blues concert series.
One researcher carried a loaded derringer into the lab, explaining that he attended classes in a dodgy neighborhood and needed the protection. He was fired when the pistol discharged as he changed clothes, wounding him. “No further gunplay in the locker room,” the division director said. At the annual Turkey Raffle in the basement auditorium, Sandy Preto, a lab researcher who moonlighted as a belly dancer at a nearby club, surprised colleagues with a performance.
1
Throughout, the lab’s hazards remained unignorable. One day, a new scientist named Paul Nelson assisted a senior researcher who was heating and freezing molten zinc mixed with a few tenths of a gram of plutonium. For protection, they wore gas masks, but the concoction accidentally spilled and burned straight through some hot stainless steel. Nelson “thought about my children and decided it was time to leave.” Colleagues subjected him to good-natured ribbing for fleeing a harmless bit of combustion. They were somewhat less casual a few years later when an experiment with uranium and plutonium oxide blew out the glass panels of a working lab, created a bulge in the concrete walls, and scattered radioactivity.
2
Researchers had accidentally installed the safety meter backward, leading to a buildup of hydrogen and oxygen. Cleaning crews removed the contamination while the researchers sat out some time on medical watch.
Some things went unchanged—gazing from his window one day, Nelson counted eighty-three white deer—but Argonne was aging. In the 1970s, a former senior manager remarked that the lab “isn’t exactly the Club Med type of atmosphere that one would expect to engender romantic relationships.”
3
When high emotions did arise, they seemed to pit the various arms of science against one another. The engineers called the chemists “pharmacists,” who assailed the former as “pipefitters.” The physicists had a similarly low opinion of materials scientists. But the physicists cast themselves favorably as “part of the big science world [that] thought big.” Unlike the energy storage scientists, who insisted on going home for dinner at six, the physicists frequently worked around the clock, through weekends and on holidays if necessary, to repair, say, a failed particle accelerator.
4
There was truth in what the physicists said—Argonne’s battery guys by and large were not the type who stuck out.
• • •
That was new, because for much of the eighteenth and nineteenth centuries, batteries and the electricity held within them were treated as an almost unfathomable force by poets, philosophers, and scientists. Those who had unleashed the epoch were accorded tremendous deference. Alessandro Volta invented the first battery and thus launched the electric age in 1799. It was a feat rooted in a debate with fellow Italian Luigi Galvani, who claimed that frogs possessed an internal store of electricity. Volta theorized that the electricity observed by Galvani originated in metals used as part of the experiment, rather than in the frogs themselves. Volta created his battery while carrying out experiments to disprove Galvani. Benjamin Franklin, a contemporary, had already coined the word to describe a rudimentary electric device he built out of glass panes, lead plates, and wires. But Franklin’s was a battery in name only, while Volta’s was a true electric storage unit. After Volta’s brainchild, scientists kept hooking up batteries to corpses to see if they could be coaxed back to life. Many wondered whether electricity could cure cancer or if it was the source of life itself. What if souls were electric impulses?
To make a battery, you start with two components called electrodes. One is negatively charged, and is called the anode. The other, positively charged electrode is called the cathode. When the battery produces electricity—when it discharges—positively charged lithium atoms, known as ions, shuttle from the negative to the positive electrode (thus giving the battery its name, lithium-ion). But to get there, the ions need a facilitator—something through which to travel—and that is a substance called electrolyte. If you can reverse the process—if you can force the ions now to shuttle back to the negative electrode—you recharge the battery. When you do that again and again, shuttling the ions back and forth between the electrodes, you have what is called a rechargeable battery. But that is a quality that only certain batteries possess.
The battery’s very simplicity—its remarkably small number of parts—has both helped and hindered the efforts of scientists to improve on Volta’s creation. They had only the cathode, the anode, and the electrolyte to think about, and, to fashion them, a lot of potentially suitable elements on the entire periodic table. Yet this went both ways—there was no way to bypass those three parts and, as it soon became apparent, only so many of the elements that were truly attractive in a battery. In 1859, a French physicist named Gaston Planté invented the rechargeable lead-acid battery. Planté’s battery used a cathode made of lead oxide and an anode of electron-heavy metallic lead. When his battery discharged electricity, the electrodes reacted with a sulfuric acid electrolyte, creating lead sulfate and producing electric current. But Planté’s structure went back to the very beginning—it was Volta’s pile, merely turned on its side, with plates stacked next to rather than atop one another. The Energizer, commercialized in 1980, was a remarkably close descendant of Planté’s invention. In more than a century, the science hadn’t changed.
In the early part of the twentieth century, electric cars powered by lead-acid batteries seemed superior to rivals featuring the gasoline-powered internal combustion engine. But a series of inventions, including the electric starter (which eclipsed the awkward rotary hand crank), finally gave the advantage to the internal combustion engine propelled by gasoline and contained explosions rather than a flow of electricity. For four decades, few seemed to think that things should be different.
In 1966, Ford Motor tried to bring back the electric car. It announced a battery that used
liquid
electrodes and a
solid
electrolyte, the opposite of Planté’s configuration. It was a new way of thinking, with electrodes—one sulfur and the other sodium—that were light and could store fifteen times more energy than lead-acid in the same space.
There were disadvantages, of course. The Ford battery did not operate at room temperature but at about 300 degrees Celsius. The internal combustion engine operates at an optimal temperature of about 90 degrees Celsius. Driving around with much hotter, explosive molten metals under your hood was risky. Realistically speaking, that would confine the battery’s practical use to stationary storage, such as at electric power stations. Yet at first, both Ford and the public disregarded prudence. With its promise of clean-operating electric cars, Ford captured the imagination of a 1960s population suddenly conscious of the smog engulfing its cities.
Popular Science
described an initial stage at which electric Fords using lead-acid batteries could travel forty miles at a top speed of forty miles an hour. As the new sulfur-sodium batteries came into use, cars would travel two hundred miles at highway speeds, Ford claimed. You would recharge for an hour, and then drive another two hundred miles. A pair of rival reporters who were briefed along with the
Popular Science
man were less impressed—despite Ford’s claims, one remarked within earshot of the
Popular Science
man that electrics would “never” be ready for use.
The
Popular Science
writer went on:
They walked out to their cars, started, and drove away, leaving two trains of unburned hydrocarbons, carbon monoxide, and other pollution to add to the growing murkiness of the Detroit atmosphere. [The other reporter’s remark] was a good crack. But it was wrong. When a development is needed badly enough, it comes. Without some drastic change, American cities will eventually become uninhabitable. The electric automobile can stop the trend toward poisoned air. Its details are yet to be decided. But it will come. And it won’t be long.
5
For a few years, the excitement around Ford’s breakthrough resembled the commercially inventive nineteenth century all over again. Around the world, researchers sought to emulate and, if they could, best Ford. As it had been on nuclear energy, Argonne sought to be the arbiter of the new age. In the late 1960s, an aggressive electrochemist named Elton Cairns became head of a new Argonne research unit—a Battery Department. Cairns initiated a comprehensive study of high-temperature batteries like Ford’s. Someone suggested a hybrid electric bus assisted by a methane-propelled phosphoric acid fuel cell, and it was examined as well. Welcoming suggestions, the lab director insisted only that any invention be aimed at rapid introduction to the market. To be sure that would happen, he invited companies to embed scientists at Argonne for periods of a few months to a year, and many did so.
John Goodenough, a scientist at the Massachusetts Institute of Technology, said that everything suddenly changed. Batteries were no longer boring. Goodenough attributed the frenzy to a combination of the 1973 Arab oil embargo, a general belief that the world was running out of petroleum, and rousing scientific advances on both sides of the Atlantic. Pivoting off the Ford work, a young British chemist named Stan Whittingham, working as a postdoctoral assistant at Stanford University, discovered that he could electrochemically shuttle lithium atoms from one electrode to the other at room temperature with inordinate damage to neither. To explain this action, which created rechargeability, Whittingham borrowed the term
intercalation
from chemistry, and it stuck. Exxon, the oil giant, wishing to compete with Bell Labs—“to be perceived as
the
lab of the energy business”—offered to hire Whittingham at a significant salary.
6
He accepted and set out to make a battery from his findings.
Whittingham was drawn to lithium, silvery white and malleable, because it is the lightest metal on the periodic table. But it reacts with air and, in certain circumstances, catches fire. Scientists therefore handle pure lithium metal only in a laboratory setting in which all moisture has been removed from the air. Whittingham could make lithium metal practical only if he could combine it with another metal into an alloy—which is what he did, coupling it with aluminum to create a small and powerful anode. In 1977, Exxon released Whittingham’s device as a promotional product, a coin-size battery that fit in the back of a solar watch. It was the first rechargeable lithium battery. But when Whittingham tried to make them larger, his batteries kept igniting in the Exxon lab. Despite the presence of aluminum, the lithium metal was still too reactive.
Then Goodenough, the MIT scientist, proceeded to outdo all that Ford, Argonne, and Whittingham had accomplished. By the time he was finished, he would either himself produce, or be part of the invention of, almost every major advance in modern batteries.
J
ohn Goodenough grew up in a sprawling home near New Haven, Connecticut, where his father, Erwin, was a scholar on the history of religion at Yale. His parents’ relationship “was a disaster,” he said, friction that extended into aloofness toward their children; Goodenough and his mother, Helen, especially “never bonded.” When he was twelve, John and his older brother, Walt, were sent to board on scholarships at Groton and he rarely heard from his parents again. John’s mother wrote just once as he grew to adulthood. In a slender, self-published autobiography, Goodenough cited many influences: siblings, a dog named Mack, a family maid, long-ago neighbors. But in this regard he conspicuously ignored his parents and never mentioned them by name. Theirs was a solely biological place in his life.
Goodenough’s boyhood did not suggest the warm, amusing, and self-assured adult to come. Suffering from dyslexia at a time when it was poorly understood and went untreated, Goodenough could not read at Groton, understand his lessons, or keep up in the chapel. Instead, he occupied himself in explorations of the woods, its animals and plants. Somehow everything came together. He went on to thrive at Yale, from which he graduated summa cum laude in mathematics, then by happenstance fell into science: after World War II, Goodenough, by then a twenty-four-year-old Army captain posted in the Azores Archipelago off the coast of Portugal, received a telex ordering him to Washington, D.C.—educators had stumbled on unspent budget money and advocated using it to send twenty-one returning Army officers through graduate studies in physics and math. Goodenough had taken almost no science as an undergrad but, for reasons obscured by time, a Yale math professor had added his name to the group. So he found himself at the University of Chicago, studying physics under professors Edward Teller, Enrico Fermi, and others. As Goodenough registered for preliminary undergraduate classes, necessary to catch up with the others, a professor remarked, “I don’t understand you veterans. Don’t you know that anyone who has ever done anything significant in physics has already done it by the time he was your age?”
But it turned out that Goodenough had an intuition for physics. After obtaining his doctorate in 1952, he went to work at MIT’s Lincoln Laboratory, which the U.S. Air Force had funded the year before to create the country’s first air defense system. His team was told to invent a system of computer memory, a vital component of the envisioned air defense, which was to be called SAGE. At the time, computers comprised enough vacuum tubes to fill “the space of a large dance hall,” in Goodenough’s words, and had infernally slow memories.
1
Some thought the task impossible because of the physical limits of the ceramic material with which the team was working. Three years later, the lab unveiled an invention that they called “64 x 64 bit magnetic memory,” a triumph that, in addition to helping to enable SAGE, became the foundation of later computer memory systems. For Goodenough, more advances followed, including the “Goodenough-Kanamori rules,” which became a standard for how metal oxide materials behave at the atomic scale, another building block of future computers.
Politics intruded—a U.S. senator named Mike Mansfield pushed through a law requiring that any research financed by the Air Force have an Air Force application. By now, Goodenough was fixated on finding a scientific answer to the OPEC-led energy crisis, which seemed to be the largest problem facing the country. But he was told to try something else—given the Mansfield law, the subject was the responsibility not of the Air Force but of the national labs.
For Goodenough, it was time to move on. A friend sent word of an opportunity across the Atlantic. Oxford University required a professor to teach and manage its inorganic chemistry lab. Goodenough was surprised to be selected given that he was not a chemist and in fact had completed just two college-level chemistry courses. He was lucky a second time to be chosen for a job for which he was underqualified, on paper.
• • •
Goodenough was a tough professor. An early student of his at Oxford recalled a physics course that started with 165 students. After a stern Goodenough lecture, she was one of just 8 to return for the second class.
2
Goodenough was equally exacting in the lab. After MIT, he was on the hunt for big advances in solid state chemistry, a field known for creating the kinds of materials that go commercial. Among the first on his list of targets was Stan Whittingham’s recently published breakthrough on the lithium battery.
For six decades, zinc carbon had been the standard battery chemistry for consumer electronics, having eclipsed lead oxide, which was too bulky and heavy for small devices. Whittingham’s brainchild was a leap ahead of zinc carbon—powerful and lightweight, it could power portable consumer electronics such as tape recorders. If it worked. But basic physics got in the way. The same electrochemical reactions that enabled lithium batteries also made them want to explode: the voltage would run away with itself, a cell would ignite, and before you knew it the battery was spitting out flames. But you seemed no better off if you played it safe and used other elements—you’d find that they slowly fell apart on repeated charge and discharge.
Goodenough thought he could create a more powerful battery than Whittingham’s. Much of invention, he said, involves shifting your mind-set, something many scientists either refused or simply could not do. The Exxon man’s battery relied on a sulfide electrode; Goodenough turned to another family of compounds—metal oxides, a combination of oxygen and a variety of metal elements. In his judgment, oxides could be charged and discharged at a higher voltage than Whittingham’s creation, and thus produce more energy. But there was also the matter of getting sufficient lithium to intercalate, the action that created electricity—pulling lithium from a cathode, in this case made of metal oxide, and sending it into a shuttling motion between the electrodes. The more lithium that could be shuttled, the more energy the battery would produce. But it seemed axiomatic that you could not remove all the lithium, because that would leave the cathode virtually hollowed out, and it would fall in on itself. So could any of the oxides manage to hold up under this abuse? And if so, which one, and what was the magic proportion of lithium that could be pulled out?
Goodenough directed two postdoctoral assistants to methodically work their way through structures containing a group of oxides; he asked them to find out at what voltage lithium could be extracted from the oxides, which he expected to be much higher than the 2.2 volts Whittingham was using, and to determine how much lithium could be intercalated in and out of the atomic structure before it collapsed. Their answer was half—about 50 percent of the lithium could be pulled from the cathode at 4 volts before it crumpled, which was plenty for a powerful, rechargeable battery. Of the oxides they tested, the postdocs found that cobalt was the best and most stable for this purpose.
In 1980, four years after Goodenough arrived at Oxford, lithium-cobalt-oxide was a breakthrough even bigger than Ford’s sodium-sulfur configuration. It was the first lithium-ion cathode with the capacity to power both compact and relatively large devices, a quality that made it far superior to anything on the market. Goodenough’s invention changed what was possible: it enabled the age of modern mobile phones and laptop computers. It also opened a path to the investigation of a potential resurrection of electric vehicles.
Over the years, Goodenough would attract a constellation of bright people to his lab, researchers who often had their best professional years with him. It was not that Goodenough himself did any of the hands-on experimentation—the postdoctoral assistants and researchers he attracted were actually at the bench. Goodenough could be stern, but the atmosphere of big expectation he created drove them to do exceptional work. And he talked them through their projects. One of these researchers was a young South African who arrived in 1981 with a curious idea about gemstones.