Read A short history of nearly everything Online
Authors: Bill Bryson
Tags: #General, #Essays, #Popular works, #Philosophy & Social Aspects, #Science, #Mathematics, #working
By the middle of the nineteenth century most learned people thought the Earth was at least a few million years old, perhaps even some tens of millions of years old, but probably not more than that. So it came as a surprise when, in 1859 inOn the Origin of Species , Charles Darwin announced that the geological processes that created the Weald, an area of southern England stretching across Kent, Surrey, and Sussex, had taken, by his calculations, 306,662,400 years to complete. The assertion was remarkable partly for being so arrestingly specific but even more for flying in the face of accepted wisdom about the age of the Earth.[10]It proved so contentious that Darwin withdrew it from the third edition of the book. The problem at its heart remained, however. Darwin and his geological friends needed the Earth to be old, but no one could figure out a way to make it so.
Unfortunately for Darwin, and for progress, the question came to the attention of the great Lord Kelvin (who, though indubitably great, was then still just plain William Thomson; he wouldnt be elevated to the peerage until 1892, when he was sixty-eight years old and nearing the end of his career, but I shall follow the convention here of using the name retroactively). Kelvin was one of the most extraordinary figures of the nineteenth centuryindeed of any century. The German scientist Hermann von Helmholtz, no intellectual slouch himself, wrote that Kelvin had by far the greatest intelligence and lucidity, and mobility of thought of any man he had ever met. I felt quite wooden beside him sometimes, he added, a bit dejectedly.
The sentiment is understandable, for Kelvin really was a kind of Victorian superman. He was born in 1824 in Belfast, the son of a professor of mathematics at the Royal Academical Institution who soon after transferred to Glasgow. There Kelvin proved himself such a prodigy that he was admitted to Glasgow University at the exceedingly tender age of ten. By the time he had reached his early twenties, he had studied at institutions in London and Paris, graduated from Cambridge (where he won the universitys top prizes for rowing and mathematics, and somehow found time to launch a musical society as well), been elected a fellow of Peterhouse, and written (in French and English) a dozen papers in pure and applied mathematics of such dazzling originality that he had to publish them anonymously for fear of embarrassing his superiors. At the age of twenty-two he returned to Glasgow University to take up a professorship in natural philosophy, a position he would hold for the next fifty-three years.
In the course of a long career (he lived till 1907 and the age of eighty-three), he wrote 661 papers, accumulated 69 patents (from which he grew abundantly wealthy), and gained renown in nearly every branch of the physical sciences. Among much else, he suggested the method that led directly to the invention of refrigeration, devised the scale of absolute temperature that still bears his name, invented the boosting devices that allowed telegrams to be sent across oceans, and made innumerable improvements to shipping and navigation, from the invention of a popular marine compass to the creation of the first depth sounder. And those were merely his practical achievements.
His theoretical work, in electromagnetism, thermodynamics, and the wave theory of light, was equally revolutionary.[11]He had really only one flaw and that was an inability to calculate the correct age of the Earth. The question occupied much of the second half of his career, but he never came anywhere near getting it right. His first effort, in 1862 for an article in a popular magazine calledMacmillans , suggested that the Earth was 98 million years old, but cautiously allowed that the figure could be as low as 20 million years or as high as 400 million. With remarkable prudence he acknowledged that his calculations could be wrong if sources now unknown to us are prepared in the great storehouse of creationbut it was clear that he thought that unlikely.
With the passage of time Kelvin would become more forthright in his assertions and less correct. He continually revised his estimates downward, from a maximum of 400 million years, to 100 million years, to 50 million years, and finally, in 1897, to a mere 24 million years. Kelvin wasnt being willful. It was simply that there was nothing in physics that could explain how a body the size of the Sun could burn continuously for more than a few tens of millions of years at most without exhausting its fuel. Therefore it followed that the Sun and its planets were relatively, but inescapably, youthful.
The problem was that nearly all the fossil evidence contradicted this, and suddenly in the nineteenth century there was alot of fossil evidence.
IN 1787, SOMEONE in New Jerseyexactly who now seems to be forgottenfound an enormous thighbone sticking out of a stream bank at a place called Woodbury Creek. The bone clearly didnt belong to any species of creature still alive, certainly not in New Jersey. From what little is known now, it is thought to have belonged to a hadrosaur, a large duck-billed dinosaur. At the time, dinosaurs were unknown.
The bone was sent to Dr. Caspar Wistar, the nations leading anatomist, who described it at a meeting of the American Philosophical Society in Philadelphia that autumn. Unfortunately, Wistar failed completely to recognize the bones significance and merely made a few cautious and uninspired remarks to the effect that it was indeed a whopper. He thus missed the chance, half a century ahead of anyone else, to be the discoverer of dinosaurs. Indeed, the bone excited so little interest that it was put in a storeroom and eventually disappeared altogether. So the first dinosaur bone ever found was also the first to be lost.
That the bone didnt attract greater interest is more than a little puzzling, for its appearance came at a time when America was in a froth of excitement about the remains of large, ancient animals. The cause of this froth was a strange assertion by the great French naturalist the Comte de Buffonhe of the heated spheres from the previous chapterthat living things in the New World were inferior in nearly every way to those of the Old World. America, Buffon wrote in his vast and much-esteemedHistoire Naturelle , was a land where the water was stagnant, the soil unproductive, and the animals without size or vigor, their constitutions weakened by the noxious vapors that rose from its rotting swamps and sunless forests. In such an environment even the native Indians lacked virility. They have no beard or body hair, Buffon sagely confided, and no ardor for the female. Their reproductive organs were small and feeble.
Buffons observations found surprisingly eager support among other writers, especially those whose conclusions were not complicated by actual familiarity with the country. A Dutchman named Comeille de Pauw announced in a popular work calledRecherches Philosophiques sur les Américains that native American males were not only reproductively unimposing, but so lacking in virility that they had milk in their breasts. Such views enjoyed an improbable durability and could be found repeated or echoed in European texts till near the end of the nineteenth century.
Not surprisingly, such aspersions were indignantly met in America. Thomas Jefferson incorporated a furious (and, unless the context is understood, quite bewildering) rebuttal in hisNotes on the State of Virginia , and induced his New Hampshire friend General John Sullivan to send twenty soldiers into the northern woods to find a bull moose to present to Buffon as proof of the stature and majesty of American quadrupeds. It took the men two weeks to track down a suitable subject. The moose, when shot, unfortunately lacked the imposing horns that Jefferson had specified, but Sullivan thoughtfully included a rack of antlers from an elk or stag with the suggestion that these be attached instead. Who in France, after all, would know?
Meanwhile in PhiladelphiaWistars citynaturalists had begun to assemble the bones of a giant elephant-like creature known at first as the great American incognitum but later identified, not quite correctly, as a mammoth. The first of these bones had been discovered at a place called Big Bone Lick in Kentucky, but soon others were turning up all over. America, it appeared, had once been the home of a truly substantial creatureone that would surely disprove Buffons foolish Gallic contentions.
In their keenness to demonstrate the incognitums bulk and ferocity, the American naturalists appear to have become slightly carried away. They overestimated its size by a factor of six and gave it frightening claws, which in fact came from a Megalonyx, or giant ground sloth, found nearby. Rather remarkably, they persuaded themselves that the animal had enjoyed the agility and ferocity of the tiger, and portrayed it in illustrations as pouncing with feline grace onto prey from boulders. When tusks were discovered, they were forced into the animals head in any number of inventive ways. One restorer screwed the tusks in upside down, like the fangs of a saber-toothed cat, which gave it a satisfyingly aggressive aspect. Another arranged the tusks so that they curved backwards on the engaging theory that the creature had been aquatic and had used them to anchor itself to trees while dozing. The most pertinent consideration about the incognitum, however, was that it appeared to be extincta fact that Buffon cheerfully seized upon as proof of its incontestably degenerate nature.
Buffon died in 1788, but the controversy rolled on. In 1795 a selection of bones made their way to Paris, where they were examined by the rising star of paleontology, the youthful and aristocratic Georges Cuvier. Cuvier was already dazzling people with his genius for taking heaps of disarticulated bones and whipping them into shapely forms. It was said that he could describe the look and nature of an animal from a single tooth or scrap of jaw, and often name the species and genus into the bargain. Realizing that no one in America had thought to write a formal description of the lumbering beast, Cuvier did so, and thus became its official discoverer. He called it amastodon (which means, a touch unexpectedly, nipple-teeth).
Inspired by the controversy, in 1796 Cuvier wrote a landmark paper,Note on the Species of Living and Fossil Elephants , in which he put forward for the first time a formal theory of extinctions. His belief was that from time to time the Earth experienced global catastrophes in which groups of creatures were wiped out. For religious people, including Cuvier himself, the idea raised uncomfortable implications since it suggested an unaccountable casualness on the part of Providence. To what end would God create species only to wipe them out later? The notion was contrary to the belief in the Great Chain of Being, which held that the world was carefully ordered and that every living thing within it had a place and purpose, and always had and always would. Jefferson for one couldnt abide the thought that whole species would ever be permitted to vanish (or, come to that, to evolve). So when it was put to him that there might be scientific and political value in sending a party to explore the interior of America beyond the Mississippi he leapt at the idea, hoping the intrepid adventurers would find herds of healthy mastodons and other outsized creatures grazing on the bounteous plains. Jeffersons personal secretary and trusted friend Meriwether Lewis was chosen co-leader and chief naturalist for the expedition. The person selected to advise him on what to look out for with regard to animals living and deceased was none other than Caspar Wistar.
In the same yearin fact, the same monththat the aristocratic and celebrated Cuvier was propounding his extinction theories in Paris, on the other side of the English Channel a rather more obscure Englishman was having an insight into the value of fossils that would also have lasting ramifications. William Smith was a young supervisor of construction on the Somerset Coal Canal. On the evening of January 5, 1796, he was sitting in a coaching inn in Somerset when he jotted down the notion that would eventually make his reputation. To interpret rocks, there needs to be some means of correlation, a basis on which you can tell that those carboniferous rocks from Devon are younger than these Cambrian rocks from Wales. Smiths insight was to realize that the answer lay with fossils. At every change in rock strata certain species of fossils disappeared while others carried on into subsequent levels. By noting which species appeared in which strata, you could work out the relative ages of rocks wherever they appeared. Drawing on his knowledge as a surveyor, Smith began at once to make a map of Britains rock strata, which would be published after many trials in 1815 and would become a cornerstone of modern geology. (The story is comprehensively covered in Simon Winchesters popular bookThe Map That Changed the World .)
Unfortunately, having had his insight, Smith was curiously uninterested in understanding why rocks were laid down in the way they were. I have left off puzzling about the origin of Strata and content myself with knowing that it is so, he recorded. The whys and wherefores cannot come within the Province of a Mineral Surveyor.
Smiths revelation regarding strata heightened the moral awkwardness concerning extinctions. To begin with, it confirmed that God had wiped out creatures not occasionally but repeatedly. This made Him seem not so much careless as peculiarly hostile. It also made it inconveniently necessary to explain how some species were wiped out while others continued unimpeded into succeeding eons. Clearly there was more to extinctions than could be accounted for by a single Noachian deluge, as the Biblical flood was known. Cuvier resolved the matter to his own satisfaction by suggesting that Genesis applied only to the most recent inundation. God, it appeared, hadnt wished to distract or alarm Moses with news of earlier, irrelevant extinctions.
So by the early years of the nineteenth century, fossils had taken on a certain inescapable importance, which makes Wistars failure to see the significance of his dinosaur bone all the more unfortunate. Suddenly, in any case, bones were turning up all over. Several other opportunities arose for Americans to claim the discovery of dinosaurs but all were wasted. In 1806 the Lewis and Clark expedition passed through the Hell Creek formation in Montana, an area where fossil hunters would later literally trip over dinosaur bones, and even examined what was clearly a dinosaur bone embedded in rock, but failed to make anything of it. Other bones and fossilized footprints were found in the Connecticut River Valley of New England after a farm boy named Plinus Moody spied ancient tracks on a rock ledge at South Hadley, Massachusetts. Some of these at least survivenotably the bones of an Anchisaurus, which are in the collection of the Peabody Museum at Yale. Found in 1818, they were the first dinosaur bones to be examined and saved, but unfortunately werent recognized for what they were until 1855. In that same year, 1818, Caspar Wistar died, but he did gain a certain unexpected immortality when a botanist named Thomas Nuttall named a delightful climbing shrub after him. Some botanical purists still insist on spelling itwistaria .