Read Breve historia de la química Online

Authors: Isaac Asimov

Tags: #Científico

Breve historia de la química (15 page)

BOOK: Breve historia de la química
9.88Mb size Format: txt, pdf, ePub
ads

Las ondas luminosas no están limitadas a una superficie, de manera que no se mueven simplemente hacia arriba y hacia abajo. Pueden moverse a izquierda y derecha, o de nordeste a suroeste, o de noroeste a sudeste. De hecho, hay un número infinito de direcciones en que las ondas de luz pueden oscilar en ángulo recto a la dirección de su desplazamiento. En un rayo de luz ordinaria, algunas ondas están oscilando en una dirección, otras en otra, etc. No hay una dirección preferente.

Pero si ese rayo de luz atraviesa ciertos cristales, el ordenamiento de los átomos dentro de los cristales fuerza al rayo de luz a oscilar en un plano determinado, un plano que permitirá a la luz deslizarse a través de y entre las hileras de átomos.

A la luz que oscila en un solo plano se la llama luz
polarizada
, nombre propuesto en 1808 por el físico francés Etienne Louis Malus (1775-1812). Por esa época, la teoría ondulatoria no había sido aún aceptada, y Malus creía que la luz constaba de partículas con polos norte y sur, y que en la luz polarizada todos los polos estaban orientados en la misma dirección. Esta teoría desapareció rápidamente, pero la expresión quedó, y todavía se usa.

Hasta 1815, las propiedades y el comportamiento de la luz polarizada parecían pertenecer exclusivamente al dominio de la física. En ese año, el físico francés Jean Baptiste Biot (1774-1867) mostró que si la luz polarizada pasa a través de determinados cristales, el plano en que las ondas vibran experimenta un giro. Unas veces gira en el sentido de las agujas del reloj
(dextrógiro) y
otras en sentido contrario
(levógiro).

Entre los cristales que presentaban esta propiedad de
actividad óptica
estaban los de los compuestos orgánicos. Además, algunos de estos compuestos orgánicos, como son determinados azúcares, mostraban actividad óptica incluso cuando no estaban en forma cristalina, sino en solución.

Tal como acabó por descubrirse, había sustancias que diferian solamente en sus propiedades ópticas. Idénticas en lo demás, una de ellas podía girar el plano de luz polarizada en el sentido de las agujas del reloj, y la otra en el sentido contrario. En ocasiones, una tercera podía no girarlo en absoluto. Los isómeros ácido racémico y ácido tartárico, que Berzelius había descubierto (véase pág. 109), diferían en propiedades ópticas.

Tales
isómeros ópticos
no quedaban bien explicados por las fórmulas estructurales de Kekulé.

El primer indicio de comprensión de la actividad óptica apareció en 1848, cuando el químico francés Louis Pasteur (1822-95) empezó a trabajar con cristales de tartrato amónico sódico.

Pasteur observó que los cristales eran asimétricos: es decir, un lado del cristal tenía una pequeña cara que no se presentaba en el otro. En algunos cristales, la cara se presentaba en el lado derecho, en otros en el izquierdo. Utilizando un cristal de aumento, separó cuidadosamente con pinzas los cristales, y disolvió cada grupo por separado. Las propiedades de cada grupo parecían idénticas, exceptuando la actividad óptica. Una solución era dextrógira, la otra levógira.

Parecía, pues, que la actividad óptica era el resultado de la asimetría. Y parecía también que el hecho de que el plano de la luz polarizada fuera girado en una dirección o en otra dependía de que los cristales, por lo demás idénticos, tuvieran una asimetría de «mano derecha» o de «mano izquierda».

Esta teoría resultaba satisfactoria en el caso de los cristales, pero ¿qué decir acerca de la actividad óptica en soluciones? En solución las sustancias no existen como cristales, sino como moléculas individuales flotando al azar. Si la actividad óptica implicaba asimetría, entonces dicha asimetría debía existir en la misma estructura molecular.

Las fórmulas estructurales de Kekulé no mostraban la necesaria asimetría, pero esta falta no invalidaba necesariamente la relación entre asimetría y actividad óptica. Después de todo, las fórmulas estructurales de Kekulé estaban escritas en dos dimensiones sobre la superficie plana de la pizarra o de un trozo de papel. Y, naturalmente, no era de esperar que en realidad las moléculas orgánicas fuesen bidimensionales.

Parecía cierto que los átomos en una molécula hubieran de distribuirse en tres dimensiones, y en ese caso su disposición podría presentar la asimetría precisa para exhibir actividad óptica. Sin embargo ¿cómo aplicar la necesaria tridimensionalidad a la molécula?

Los átomos jamás habían sido vistos, y su verdadera existencia podía ser simplemente una ficción convenida, utilizada para explicar las reacciones químicas. ¿Podía tomarse confiadamente su existencia tan literalmente que pudieran distribuirse en tres dimensiones?

Hacía falta un hombre joven para dar el paso siguiente, alguien que no hubiese adquirido todavía la sabía prudencia que viene con los años.

Moléculas tridimensionales

Esta persona fue el joven químico danés Jacobus Hendricus Van't Hoff (1852-1911). En 1874, sin terminar aún su tesis para el doctorado, sugirió atrevidamente que los cuatro enlaces del carbono estaban distribuidos en las tres dimensiones del espacio hacia los cuatro vértices de un tetraedro.

Para ver esto, imaginemos que tres de los enlaces del carbono están colocados como las patas de un trípode aplastado, mientras que el cuarto enlace apunta directamente hacia arriba. Cada enlace equidista entonces de los otros tres, y el ángulo entre un enlace y cualquiera de sus vecinos es de aproximadamente 109° (véase figura 11).

Fig 11. El enlace tetraédrico de los átomos de carbono permite dos

configuraciones de los átomos en los compuestos, siendo una de ellas la

imagen especular de la otra. Este modelo muestra las disposiciones en

imagen especular de la molécula de ácido láctico, CH
3
, CHOCCO
2
H.

Los cuatro enlaces del átomo de carbono están colocados simétricamente alrededor del átomo, y la asimetría se introduce solamente cuando cada uno de los cuatro enlaces está fijado a un tipo de átomo o grupo de átomos diferentes. Los cuatro enlaces pueden disponerse entonces exactamente de dos maneras distintas, siendo una la imagen especular de la otra. Este modelo aportaba precisamente el tipo de asimetría que Pasteur había encontrado en los cristales.

Casi simultáneamente, el químico francés Joseph Achille Le Bel (1847-1930) publicó una sugerencia similar. El átomo de carbono tetraédrico es conocido a veces como
teoría de VantHoff-LeBel.

El átomo tetraédrico explicaba tantas cosas y de forma tan clara que fue rápidamente aceptado. Contribuyó a ello el libro publicado en 1887 por el químico alemán Johannes Adolf Wislicenus (1835-1902), que colocaba la autoridad de un antiguo y muy respetado científico en apoyo de la teoría.

Y sobre todo, no había enmascaramiento de los hechos. Los compuestos que poseían
átomos de carbono asimétricos
(los que estaban enlazados a cuatro grupos diferentes) poseían actividad óptica, mientras que los que no poseían tales átomos, carecían de ella. Además, el número de isómeros ópticos era siempre igual al número predicho por la teoría de Van'tHoff-LeBel.

En las últimas décadas del siglo xix la concepción tridimensional de los enlaces se extendió más allá de los átomos de carbono.

El químico alemán Viktor Meyer (1848-97) mostró que los enlaces de los átomos de nitrógeno, concebidos en tres dimensiones, podían explicar también ciertos tipos de isomerías ópticas. Por su parte, el químico inglés William Jackson Pope (1870-1939) mostró que lo mismo era aplicable a otros átomos tales como los de azufre, selenio y estaño, el germano-suizo Alfred Werner (1866-1919) añadió el cobalto, cromo, rodio y otros metales.

(A comienzos de 1891, Werner desarrolló una
teoría de la coordinación
de la estructura molecular. Esta idea, según él, le vino en sueños, despertándole a las dos de la madrugada con un sobresalto. Esencialmente, esta teoría mantiene que las relaciones estructurales entre átomos no tienen por qué estar restringidas a los enlaces ordinarios de valencia, sino que —particularmente en ciertas moléculas inorgánicas relativamente complejas— los grupos de átomos podrían distribuirse alrededor de algún átomo central, de acuerdo con ciertos principios geométricos que no parecen tener en cuenta el enlace de valencia ordinario. Pasó casi medio siglo antes de que las nociones de valencia se afinasen lo bastante como para incluir tanto los compuestos simples que se ajustaban a las nociones de Frankland y Kekulé, como los
compuestos de coordinación
de Werner.)

La idea de estructura tridimensional llevó rápidamente a ulteriores avances. Viktor Meyer había demostrado que si bien las agrupaciones de átomos ordinariamente pueden girar en libertad alrededor de un único enlace que las une al resto de la molécula, el tamaño de los grupos de átomos cercanos podría impedir a veces tal rotación. Esta situación, llamada
impedimento esférico
, puede compararse a la de una puerta que normalmente gira libremente sobre sus goznes, pero que queda bloqueada por algún obstáculo colocado detrás de ella. Pope llegó a mostrar que a consecuencia del impedimento estérico era posible que una molécula fuera asimétrica. Podría entonces mostrar actividad óptica, aun cuando ninguno de los átomos constituyentes fuese estrictamente asimétrico.

El químico alemán Johann Friedrich Wilhelm Adolf von Baeyer (1835-1917) utilizó en 1885 la representación tridimensional para dibujar átomos de carbono fijos a anillos planos. Si los cuatro enlaces de los átomos de carbono apuntan hacia los cuatro vértices de un tetraedro, el ángulo entre dos cualesquiera de ellos es aproximadamente de 109,5°. Baeyer argumentó que en cualquier compuesto orgánico hay una tendencia a permitir que los átomos de carbono se conecten de modo tal que los enlaces conserven sus ángulos naturales. Si el ángulo es obligado a variar, el átomo se encontrará sometido a un esfuerzo.

Tres átomos de carbono enlazado en anillo formarían un triángulo equilátero, con el ángulo entre cada par de enlaces igual a 60°. Esta separación es muy diferente del ángulo natural de 109,5°, y por esta razón los anillos de 3 carbonos son difíciles de formar y, una vez formados, fáciles de romper.

Un anillo de 4 carbonos formará un cuadrado, con ángulos de 90°; un anillo de 5 carbonos formará un pentágono con ángulos de 108°; un anillo de 6 carbonos formará un hexágono, con ángulos de 120°. Parece que un anillo de 5 carbonos no implica virtualmente ninguna fuerza sobre los enlaces del átomo de carbono, y un anillo de 6 carbonos implica sólo una fuerza pequeña. La
teoría de las tensiones
de Baeyer parecía explicar, por tanto, la preponderancia de tales anillos en la naturaleza sobre los anillos de más de 6 ó menos de 5 átomos
[17]
.

El más espectacular de todos los trabajos fue quizás el realizado en 1880 por el químico alemán Emil Fischer (1852-1919) sobre la química de los azúcares simples. Varios azúcares bien conocidos comparten la misma fórmula empírica C
6
H
12
O
6
. También tienen muchas propiedades en común, pero se diferencian en otras, especialmente en la magnitud de su actividad óptica.

Fischer demostró que cada uno de estos azúcares tenía cuatro átomos de carbonos asimétricos, y que en base a la teoría de Van't Hoff-Le Bel habría entonces dieciséis isómeros ópticos. Estos isómeros se dispondrían en ocho pares; en cada par un isómero giraría el plano de la luz polarizada en el sentido de las agujas del reloj, exactamente con la misma magnitud con que el otro isómero la giraría en el sentido contrario.

Fischer procedió a establecer la disposición exacta de los átomos en cada uno de los dieciséis isómeros. El hecho de haberse hallado precisamente dieciséis isómeros de azúcares con seis carbonos, divididos en ocho pares, constituye una fuerte prueba en favor de la validez de la teoría de Van't Hoff-Le Bel. Esta misma precisión en las predicciones se da en el caso de los otros tipos de azúcares, de aminoácidos y de cualquier otro tipo de compuestos.

Hacia 1900 la descripción de la estructura molecular en tres dimensiones, habiendo demostrado su validez, fue universalmente aceptada.

8. La tabla periódica

Los elementos en desorden

Hay un curioso paralelismo entre las historias de la química orgánica y de la inorgánica, a lo largo del siglo xix. Las primeras décadas del siglo pasado contemplaron una desesperante proliferación en el número de compuestos orgánicos, y también en el número de elementos. El tercer cuarto de siglo vio el mundo de los compuestos orgánicos puesto en orden, gracias a las fórmulas estructurales de Kekulé. También vio ordenado el mundo de los elementos, y al menos parte del mérito de ambos cambios se debió a determinada reunión internacional de químicos.

Pero empecemos con el desorden existente a comienzos de siglo.

El descubrimiento de nuevos elementos, además de los nueve conocidos por los antiguos y los cuatro estudiados por los alquimistas medievales, se ha mencionado en el capitulo 4. Los elementos gaseosos, nitrógeno, hidrógeno, oxígeno y cloro, habían sido descubiertos todos ellos en el siglo xviii. Y lo mismo los metales cobalto, platino, níquel, manganeso, tungsteno, molibdeno, uranio, titanio y cromo.

En la primera década del siglo xix se añadieron a la lista no menos de catorce nuevos elementos. Entre los químicos ya mencionados en este libro, Davy había aislado al menos seis por medio de la electrólisis (véase página 97). Guy-Lussac y Thénard habían aislado boro; Wollaston había aislado paladio y rodio, mientras que Berzelius había descubierto el cerio.

BOOK: Breve historia de la química
9.88Mb size Format: txt, pdf, ePub
ads

Other books

The Simple Truth by David Baldacci
Purity by Jonathan Franzen
Nookie (Nookie Series) by Dansby, Anieshea
Out of India by Ruth Prawer Jhabvala
She's Got Dibs by Nuest, AJ
The Hit by David Baldacci
Back to Reality by Danielle Allen
A Crimson Frost by McClure, Marcia Lynn
Keeper of the Doves by Betsy Byars