Breve historia de la química (16 page)

Read Breve historia de la química Online

Authors: Isaac Asimov

Tags: #Científico

BOOK: Breve historia de la química
3.47Mb size Format: txt, pdf, ePub

El químico inglés Smithson Tennant (1761-1815), para el que Wollaston había trabajado como ayudante, descubrió también el osmio y el iridio. Otro químico inglés, Charles Hatchett (aproximadamente 1765-1847), aisló el colombio (ahora llamado oficialmente niobio), mientras que el químico sueco Anders Gustaf Ekeberg (1767-1813) descubrió el tántalo.

El impulso en las décadas sucesivas no fue tan fuerte, pero el número de elementos continuó en aumento. Berzelius, por ejemplo, descubrió cuatro elementos más: selenio, silicio, circonio y torio (véase fig. 12). Luis Nicolas Vauquelin, en 1797, descubrió el berilio.

Hacia 1830 se conocían cincuenta y cinco elementos diferentes, un buen paso desde los cuatro elementos de la antigua teoría. De hecho, el número era demasiado grande para no inquietar a los químicos. Los elementos variaban extensamente en sus propiedades, y parecía existir poco orden entre ellos. ¿Por qué había tantos? Y ¿cuántos más quedaban todavía por descubrir? ¿Diez? ¿Cien? ¿Mil? ¿Un número infinito?

Era tentador buscar un orden en el conjunto de los elementos ya conocidos. Quizá de esta manera podría encontrarse alguna razón que explicase su número, y alguna manera de justificar la variación de las propiedades que poseían.

El primero en captar un atisbo de orden fue el químico alemán Johann Wolfgang Dóbereiner (1780-1849). En 1829 observó que el elemento bromo, descubierto tres años antes por el químico francés Antoine Jéróme Balard (1802-76), parecía tener propiedades que estaban justo a mitad de camino entre las del cloro y las del yodo. (El yodo había sido descubierto por otro químico francés, Bernard Courtois [1777-1838], en 1811.) El cloro, bromo y yodo no sólo mostraban una progresiva gradación en propiedades como color y reactividad, sino que el peso atómico del bromo parecía estar justo a medio camino entre los del cloro y el yodo. ¿Sería una coincidencia?

Fig. 12. Lista de los cincuenta y cuatro elementos conocidos y descubitos

en la época de Berzelius, con sus pesos atómicos calculados tomar como

base el del oxígeno igual a 16,0000. (Tomado de
The Sea for

the Elements, Basic Books.)

Dóbereiner llegó a encontrar otros dos grupos de tres elementos que exhibían claras gradaciones de propiedades: calcio, estroncio y bario; y azufre, selenio y teluro. En ambos grupos el peso atómico del segundo elemento estaba a mitad de camino entre los de los otros dos. ¿Se trataba de una nueva coincidencia?

Dóbereiner llamó a estos grupos «tríadas», y buscó otras infructuosamente. El hecho de que cinco sextas partes de los elementos conocidos no pudieran colocarse en ninguna tríada hizo que los químicos decidieran que los hallazgos de Dóbereiner eran mera coincidencia. Además, el modo en que los pesos atómicos encajaban con las propiedades químicas entre los elementos de las tríadas de Dóbereiner no impresionó generalmente a los químicos. En la primera mitad del siglo xix, los pesos atómicos tendían a subestimarse. Resultaban convenientes para hacer cálculos químicos, pero no parecía haber ninguna razón para usarlos en la confección de listas de elementos, por ejemplo.

Incluso era dudoso que los pesos atómicos fueran útiles en los cálculos químicos. Algunos químicos no distinguían con detalle el peso atómico del peso molecular; otros no distinguían entre peso atómico y peso equivalente. Así, el peso equivalente del oxígeno es 8 (véase pág. 84), su peso atómico es 16, y el peso molecular 32. En los cálculos químicos, el peso equivalente, 8, es el más socorrido; ¿por qué usar entonces el número 16 para colocar al oxígeno en la lista de los elementos?

Esta confusión entre peso equivalente, peso atómico y peso molecular extendió su influencia desorganizadora no sólo a la cuestión de la lista de elementos, sino al estudio de la química en general. Los desacuerdos sobre los pesos relativos que debían atribuirse a los diferentes átomos condujeron a desacuerdos sobre el número de átomos de cada elemento que había en una molécula dada.

Kekulé, poco después de haber publicado sus sugerencias conducentes a las fórmulas estructurales, se dio cuenta de que esta idea quedaría en nada si los químicos no se ponían de acuerdo, para empezar, acerca de las fórmulas empíricas. Por lo tanto propuso una conferencia de químicos importantes de toda Europa para discutir el asunto. Como resultado de ello se convocó la primera reunión científica internacional de la historia. Se llamó Primer Congreso Internacional de Química y se reunió en 1860 en la ciudad de Karlsruhe, en Alemania.

Asistieron ciento cuarenta delegados, entre los que se hallaba el químico italiano Stanislao Cannizzaro (1826-1910). Dos años antes, Cannizzaro había topado con el trabajo de su compatriota Avogadro (véase pág. 90). Comprendió que la hipótesis de Avogadro podía utilizarse para distinguir entre peso atómico y peso molecular de los elementos gaseosos importantes, y que esta distinción serviría para aclarar la cuestión de los pesos atómicos de los elementos en general. Además, comprendió la importancia de distinguir cuidadosamente el peso atómico del peso equivalente.

En el Congreso hizo una gran exposición del tema, y a continuación distribuyó copias de un folleto en el que explicaba con detalle sus argumentos. Lenta y laboriosamente, sus opiniones ganaron adeptos en el mundo de la química. A partir de entonces, se clarificó la cuestión del peso atómico, y se apreció la importancia de la tabla de pesos atómicos de Berzelius (véase pág. 92).

Para la química orgánica, este desarrollo significaba que los científicos podían ahora entenderse sobre las fórmulas empíricas y seguir añadiendo detalles a la fórmula estructural, primero en dos dimensiones y después en tres. La forma en que esto se llevó a cabo ha sido descrita en el capítulo anterior.

Para la química inorgánica los resultados fueron igualmente fructíferos, dado que ahora existía un orden racional para ordenar los elementos según su peso atómico creciente. Una vez hecho esto, los químicos podrían mirar la tabla periódica con nuevos ojos.

La organización de los elementos

En 1864, el químico inglés John Alexander Reina Newlands (1837-98) ordenó los elementos conocidos según sus pesos atómicos crecientes, y observó que esta ordenación también colocaba las propiedades de los elementos en un orden, al menos parcial (ver fig. 13). Al disponer los elementos en columnas verticales de siete, los que eran semejantes tendían a quedar en la misma fila horizontal. Así, el potasio quedó cerca del sodio muy semejante a él; el selenio quedó en la misma línea que el azufre, muy parecido; el calcio próximo al magnesio, y así sucesivamente. Y efectivamente, las tres tríadas de Dóbereiner se hallaban en dichas filas.

Newlands llamó a esto la
ley de las octavas
(en música, siete notas forman una octava, siendo la octava nota casi un duplicado de la primera y principio de una nueva octava). Desgraciadamente, mientras unas filas de esta tabla contenían elementos semejantes, otras contenían elementos enormemente dispares. Los demás químicos pensaron que lo que Newlands trataba de demostrar era más una coincidencia que algo significativo. No pudo conseguir que su trabajo fuese publicado.

Fíg. 13. La «ley de las octavas», publicada en 1864 por J. A. R.

Newlands, fue una precursora de la tabla periódica de Mendeleiev.

Dos años antes, el geologo francés Alexandre Emile Beguyer de Chancourtois (1820-86) también había ordenado los elementos según su peso atómico creciente y los había distribuido en una especie de gráfico cilindrico. También aquí los elementos semejantes tendían a coincidir en columnas verticales. Publicó su trabajo, pero no su gráfico, y sus estudios pasaron también inadvertidos (véase figura 14).

Más éxito tuvo el químico alemán Julius Lothar Meyer (1830-95). Meyer consideró el volumen ocupado por determinados pesos fijos de los diversos elementos. En tales condiciones, cada peso contenía el mismo número de átomos de su elemento. Esto significaba que la razón de los volúmenes de los diversos elementos era equivalente a la razón de los volúmenes de los átomos simples que componían a dichos elementos. Así, pues, se podía hablar de
volúmenes atómicos.

Al representar los volúmenes atómicos de los elementos en función de los pesos atómicos, se obtenían una serie de ondas que alcanzaban valores máximos en los metales alcalinos: sodio, potasio, rubidio y cesio. Cada descenso y subida a un máximo o mínimo correspondería a un
período
en la tabla de elementos. En cada período, también descendían y subían otras propiedades físicas, además del volumen atómico (véase figura 15).

El hidrógeno, el primero de la lista de elementos (porque tiene el peso atómico más bajo), es un caso especial, y puede considerarse que constituye él solo el primer período. El segundo y tercer periodos de la tabla de Meyer comprendían siete elementos cada uno, y repetían la ley de Newlands de las octavas. Sin embargo, las dos ondas siguientes comprendían más de siete elementos, y esto demostraba claramente que Newlands había cometido un error. No se podía forzar a que la ley de las octavas se cumpliese estrictamente a lo largo de toda la tabla de elementos, con siete elementos en cada fila horizontal. Los últimos períodos tenían que ser más largos que los primeros.

Fig. 14. Un trazo en espiral fue el resultado que obtuvo

Beguyer de Chancourtois, en 1862, al ordenar los elementos por su

peso atómico y relacionar los que poseían propiedades análogas.

Meyer publicó su trabajo en 1870, pero llegó demasiado tarde. Un año antes, el químico ruso Dimitri Ivanovich Mendeleiev (1834-1907) había descubierto también el cambio en la longitud de los períodos de los elementos, pasando luego a demostrar las consecuencias de manera particularmente espectacular.

Mendeleiev estaba escribiendo su tesis en Alemania en la época en que se celebró el Congreso de Karlsruhe, y fue uno de los que escuchó y oyó a Cannizzaro sus opiniones sobre el peso atómico. De vuelta a Rusia, comenzó también él a estudiar la lista de elementos según su peso atómico creciente.

Mendeleiev atacó las cuestiones desde el punto de vista de la valencia (véase pág. 116). Observó que los primeros elementos de la lista mostraban un cambio progresivo en sus valencias. Es decir, el hidrógeno tenía una valencia de 1, el litio de 1, el berilio de 2, el boro de 3, el carbono de 4, el nitrógeno de 3, el azufre de 2, el flúor de 1, el sodio de 1, el magnesio de 2, el aluminio de 3, el silicio de 4, el fósforo de 3, el oxígeno de 2, el cloro de 1, y así sucesivamente.

La valencia subía y bajaba estableciendo períodos: en primer lugar, el hidrógeno solo; después, dos períodos de siete elementos cada uno; a continuación, períodos que contenían más de siete elementos. Mendeleiev utilizó su información para construir no un gráfico, como Meyer y Beguyer de Chancourtois habían hecho, sino una tabla como la de Newlands.

Other books

Amazonia by Ariela Vaughn
Hair of the Dog by Kelli Scott
A Lick of Flame by Cathryn Fox
The Thinking Reed by Rebecca West
Xenopath by Eric Brown
A Dead Issue by John Evans
Ramage & the Renegades by Dudley Pope
Born to Be Wild by Donna Kauffman
True Crime by Collins, Max Allan