Hominids

Read Hominids Online

Authors: Robert J. Sawyer

BOOK: Hominids
5.63Mb size Format: txt, pdf, ePub
Hominids
by 
Robert J. Sawyer
For Marcel Gagne And Sally Tomasevic
Dude and The Other Dude
Great People, Great Friends
Author’s Note:
A
-tal
Tale
So is it
Neanderthal
or
Neandertal
?
Both spellings are correct, and both are in common usage, even among paleoanthropologists.
The fossil this type of hominid is named for was found in 1856, in a valley near Dыsseldorf. The place was then called
Neanderthal

thal
meaning “valley,” and “Neander” being a Greek version of “Neumann,” the surname of the fellow after whom the valley was named.
Early in the twentieth century, the German government regularized spelling across all parts of their nation, and “thal” and “tal,” both of which were in use up to that time in various parts of the country, became just “tal.” So it’s clear that the place that used to be called
Neanderthal
is now only correctly spelled
Neandertal
.
But what about the fossil hominid? Should we therefore rename it
Neandertal
, as well?
Some say yes. But there’s a problem: scientific names are cast in stone once coined and, for all time, this type of hominid will be known in technical literature with a “th” spelling, either as
Homo neanderthalensis
or
Homo sapiens neanderthalensis
(depending on whether one classifies it as a separate species from us, or merely a subspecies). It does seem awkward to spell the “neanderthal” part differently in the scientific and English names.
Meanwhile, those who favor the use of the spelling “Neandertal man” are notably silent when the topic of Peking man comes up; there’s no movement to change that name to “Beijing man,” even though the city’s name is always spelled Beijing in English these days.
I checked the latest editions of six major English-language dictionaries:
The American Heritage English Dictionary
,
The Encarta World English Dictionary
,
Merriam-Webster’s Collegiate Dictionary
(Tor’s house standard),
The Oxford English Dictionary
,
Random House Webster’s Unabridged Dictionary
, and
Webster’s New World Dictionary
. All accept both spellings.
And what about pronunciation? Some purists contend that regardless of whether you spell it
-tal
or
-thal
, you should pronounce it with a hard-T sound, since both
t
and
th
have always denoted that in German.
Maybe so, but I’ve heard many paleoanthropologists say it with an English
th
sound (as in
thought
). And of the six dictionaries I checked, all of them except the
OED
allow both pronunciations (with the
OED
accepting only
-tal
). The argument that English speakers should pronounce it the way German speakers do seems to imply that we should also call the capital of France “par-ee,” rather than “pair-is,” and yet doing so would be considered pretentious in most contexts.
Ultimately, it comes down to personal choice. In the extensive collection of research materials I consulted in creating this book, the
-thal
spelling outnumbers the
-tal
by better than two-to-one (even in recent technical literature), so I’ve settled on the original spelling,
Neanderthal
—which you may pronounce whichever way you wish.

 

The southern forests provide the message that it didn’t have to be this way, that there is room on the earth for a species biologically committed to the moral aspects of what, ironically, we like to call “humanity”: respect for others, personal restraint, and turning aside from violence as a solution to conflicting interests. The appearance of these traits in bonobos hints at what might have been among Homo sapiens, if evolutionary history had been just slightly different.
Richard Wrangham and Dale Peterson
Demonic Males: Apes and the Origins of Human Violence

 

You have zero privacy anyway. Get over it.
Scott McNealy
Chief Executive Officer
Sun Microsystems
Chapter 1

Day One
Friday, August 2
148/118/24

 

The blackness was absolute.
Watching over it was Louise Benoit, twenty-eight, a statuesque postdoc from Montreal with a mane of thick brown hair stuffed, as required here, into a hair net. She kept her vigil in a cramped control room, buried two kilometers—“a mile an’ a quarder,” as she sometimes explained for American visitors in an accent that charmed them—beneath the Earth’s surface.
The control room was next to the deck above the vast, unilluminated cavern housing the Sudbury Neutrino Observatory. Suspended in the center of that cavern was the world’s largest acrylic sphere, twelve meters—“almost fordy feet”—across. The sphere was filled with eleven hundred tonnes of heavy water on loan from Atomic Energy of Canada Limited.
Enveloping that transparent globe was a geodesic array of stainless-steel struts, supporting 9,600 photomultiplier tubes, each cupped in a reflective parabola, each aimed in toward the sphere. All of this—the heavy water, the acrylic globe that contained it, and the enveloping geodesic shell—was housed in a ten-story-tall barrel-shaped cavern, excavated from the surrounding norite rock. And that gargantuan cavern was filled almost to the top with ultrapure regular water.
The two kilometers of Canadian shield overhead, Louise knew, protected the heavy water from cosmic rays. And the shell of regular water absorbed the natural background radiation from the small quantities of uranium and thorium in the surrounding rock, preventing that, too, from reaching the heavy water. Indeed, nothing could penetrate into the heavy water except neutrinos, those infinitesimal subatomic particles that were the subject of Louise’s research. Trillions of neutrinos passed right through the Earth every second; in fact, a neutrino could travel through a block of lead a light-year thick with only a fifty-percent chance of hitting something.
Still, neutrinos poured out of the sun in such vast profusion that collisions did occasionally occur—and heavy water was an ideal target for such collisions. The hydrogen nuclei in heavy water each contain a proton—the normal constituent of a hydrogen nucleus—plus a neutron, as well. And when a neutrino did chance to hit a neutron, the neutron decayed, releasing a proton of its own, an electron, and a flash of light that could be detected by the photomultiplier tubes.
At first, Louise’s dark, arching eyebrows did not rise when she heard the neutrino-detection alarm go
ping
, the alarm sounded briefly about a dozen times a day, and although it was normally the most exciting thing to happen down here, it still didn’t merit looking up from her copy of
Cosmopolitan
.
But then the alarm sounded again, and yet again, and then it stayed on, a solid, unending electric bleep like a dying man’s EKG.
Louise got up from her desk and walked over to the detector console. On top of it was a framed picture of Stephen Hawking—not signed, of course. Hawking had visited the Sudbury Neutrino Observatory for its grand opening a few years ago, in 1998. Louise tapped on the alarm’s speaker, in case it was on the fritz, but the keening continued.
Paul Kiriyama, a scrawny grad student, dashed into the control room, arriving from elsewhere in the vast, underground facility. Paul was, Louise knew, usually quite flustered around her, but this time he wasn’t at a loss for words. “What the heck’s going on?” he asked. There was a grid of ninety-eight by ninety-eight LEDs on the detector panel, representing the 9,600 photomultiplier tubes; every one of them was illuminated.
“Maybe someone accidentally turned on the lights in the cavern,” said Louise, sounding dubious even to herself.
The prolonged bleep finally stopped. Paul pressed a couple of buttons, activating five TV monitors slaved to five underwater cameras inside the observatory chamber. Their screens were perfectly black rectangles. “Well, if the lights
were
on,” he said, “they’re off now. I wonder what—”
“A supernova!” declared Louise, clapping her long-fingered hands together. “We should contact the Central Bureau for Astronomical Telegrams; establish our priority.” Although SNO had been built to study neutrinos from the sun, it could detect them from anywhere in the universe.
Paul nodded and plunked himself down in front of a Web browser, clicking on the bookmark for the Bureau’s site. It was worth reporting the event, Louise knew, even if they weren’t yet sure.
A new series of pings sounded from the detector panel. Louise looked at the LED board; several hundred lights were illuminated all over the grid. Strange, she thought. A supernova should register as a
directional
source …
“Maybe something’s wrong with the equipment?” said Paul, clearly reaching the same conclusion. “Or maybe the connection to one of the photomultipliers is shorting out, and the others are picking up the arc.”
The air split with a creaking, groaning sound, coming from next door—from the deck atop the giant detector chamber itself. “Perhaps we should turn on the chamber lights,” said Louise. The groaning continued, a subterranean beast prowling in the dark.
“But what if it
is
a supernova?” said Paul. “The detector is useless with the lights on, and—”
Another loud cracking, like a hockey player making a slap shot. “Turn on the lights!”
Paul lifted the protective cover on the switch and pressed it. The images on the TV monitors flared then settled down, showing—
“Mon dieu,”
declared Louise.
“There’s something inside the heavy-water tank!” said Paul. “But how could—?”
“Did you see that?” said Louise. “It’s moving, and—good Lord, it’s a man!”
The cracking and groaning sounds continued, and then—
They could see it on the monitors and hear it coming through the walls.
The giant acrylic sphere burst apart along several of the seams that held its component pieces together.
“Tabernacle,”
Louise swore, realizing the heavy water must now be mixing with the regular H2O inside the barrel-shaped chamber. Her heart was jackhammering. For half a second, she didn’t know whether to be more concerned about the destruction of the detector or about the man who was obviously drowning inside it.
“Come on!” said Paul, heading for the door leading to the deck above the observatory chamber. The cameras were slaved to VCRs; nothing would be missed.
“Un moment,”
said Louise. She dashed across the control room, grabbed a telephone handset, and pounded out an extension from the list taped to the wall.
The phone rang twice. “Dr. Montego?” said Louise, when the Jamaican-accented voice of the mine-site physician came on. “Louise Benoit here, at SNO. We need you right away down at the neutrino observatory. There’s a man drowning in the detector chamber.”
“A man drowning?” said Montego. “But how could he possibly get in there?”
“We don’t know. Hurry!”
“I’m on my way,” said the doctor. Louise replaced the handset and ran toward the same blue door Paul had gone through earlier, which had since swung shut. She knew the signs on it by heart:

 

Keep Door Closed

Danger: High Voltage Cables

Other books

Maid to Match by Deeanne Gist
Don't You Trust Me? by Patrice Kindl
Seventh Enemy by William G. Tapply
Beautiful Blood by Lucius Shepard
The American Earl by Joan Wolf
Hawthorn and Child by Keith Ridgway