Pyramid Quest (20 page)

Read Pyramid Quest Online

Authors: Robert M. Schoch

Tags: #History, #Ancient Civilizations, #Egypt, #World, #Religious, #New Age; Mythology & Occult, #Literature & Fiction, #Mythology & Folk Tales, #Fairy Tales, #Religion & Spirituality, #Occult, #Spirituality

BOOK: Pyramid Quest
6.97Mb size Format: txt, pdf, ePub
Or they may have been able to see the Galactic Center, at least after a fashion. Physicist Paul LaViolette argues in his 1997 book
Earth under Fire
that the Galactic Center emits periodic outbursts of particles and electromagnetic radiation. One of these events, which spanned several thousand years, climaxed in about 12,200 B.C. Where we now see nothing in the Galactic Center, the ancients may have seen a significant glow that did not escape their astute and constant observations.
Does the work of Bauval and Brophy mean that the Great Pyramid was actually built not in the third millennium B.C. under Khufu but much earlier? Should the time of construction be pushed back, as Edgar Cayce prophesied, to the middle of the eleventh millennium B.C., within the very time when many of the astronomical events memorialized at Giza actually occurred?
No, in and of itself, it doesn’t necessarily change the date of construction. But it does mean we have to alter how we view the “rise” of ancient Egypt.
The Giza site as we see it shows that a tremendous amount of construction, including the bulk of the Great Pyramid, went on during the Old Kingdom, most likely during the Fourth Dynasty. This date is reinforced by both the Khufu cartouches in the upper Relieving Chambers and the Great Pyramid’s shaft alignments to the stars of the middle third millennium B.C.—which gives us at least a functional date for the pyramid, if not the time of its actual construction. That said, however, these monuments were erected not on a virgin site but on one that had been used, perhaps like Nabta Playa, for a long, long while. This hypothesis would explain the older date for the Sphinx, the differing construction of the lower layers of the Khafre Pyramid, and the rain-weathered stone blocks in the Valley and Sphinx temples. When Khufu came to Giza, he was building atop a site whose ritual use probably dated back millennia. Each of the monuments most likely incorporated structures and markers already there, such as the Descending Passage cut into the bedrock, with its perfect star-based orientation to true north.
This scenario also addresses one of the key anomalies of the Great Pyramid’s construction: why the builders left the bedrock prominence that occupies the center section of the lowest courses. From an engineering point of view, leveling the bedrock would have made more sense. But if that prominence had been a religious site, probably one dedicated to ritual observations of stars and sun, leveling it would have been a blasphemy. Incorporating it into the structure, however, added old energy to new and made the structure even more powerful and awe-inspiring.
Typically, the cultural ascendance of the Old Kingdom is portrayed as a sudden event, an unexpected and unpredictable rise from ignorance and anarchy to glory. The astronomy that underlies the Great Pyramid and the other Giza monuments tells a different story. The astronomical, astrological, and religious knowledge the Old Kingdom represented had been gathered over thousands of years and passed down, no doubt in an oral tradition that was, even by the standards of antiquity, very old. It began far back with stargazers in places like Nabta Playa studying the night skies, memorizing what they saw, and handing that knowledge on to their successors. With each new generation of sky sages, this ancient science grew, deepened, and became more sophisticated, and from it rose a mythology that lent the heavens religious significance. Finally, this knowledge made its way to the Nile Valley, where it became a key component of what we know as Predynastic through Old Kingdom Egypt.
Giza isn’t the birth of something new. It is instead the full flower of something old. And we can gain an even greater appreciation of its wonder when we turn from what Old Kingdom Egyptians and their predecessors understood of the skies to what they knew of earth.
Seven
BOUNDARIES OF SEASONS AND THE EARTH
ORPHANED WHEN ONLY TWO YEARS OLD, MOSES COTSWORTH (1859-1943) received some of his first lessons in measuring time from the grandparents and great-grandparents who raised him. Distrustful of newfangled mechanical methods for telling time, Cotsworth’s elders relied on shadow pins, noonmarks, and hourglasses to gauge the passing day, and they intrigued their young ward with a family collection of old calendars. Cotsworth carried his ancestors’ interest in the march of time into his career with the British railroads. There his talent for numbers led to an assignment to revise railway rates in the early 1890s and later to a project to improve the system of railroad statistics.
In the course of his work, Cotsworth encountered constant complaints from managers and directors about monthly fluctuations in income and expenses. It wasn’t Cotsworth’s fault; it was the calendar’s. Months can be 28, 29, 30, or 31 days in length, and there is no correspondence between date and day of the week—the first can be a Saturday in one month, and a Tuesday in the next, for example. Certain that there had to be a better way of arranging time to suit the statistical and accounting needs of business, Cotsworth followed Charles Piazzi Smyth’s lead and set out to explore the possibility that the Great Pyramid served as a perfect almanac for registering the seasons and the year.
Working from his childhood experience with sundials and noonmarks, Cotsworth began his research by fashioning model cones and pyramids to see what kinds of shadows they threw in light of various angles. He realized that at the Great Pyramid’s latitude of almost exactly 30°, an ordinary obelisk acting as a giant sundial could tell the time of day tolerably well. It would, however, have to be of an unwieldy height, some 450 feet tall, to throw a shadow that would change by a sufficient amount (about a foot a day) during the course of the year to accurately measure the length of a year. A pyramid worked better for the purpose of designating seasons. Its northern face would remain in shadow through the six winter months. That shadow would extend farther and farther as the sun approached the winter solstice, then shrink after the solstice until it reached a minimum on the equinox sometime in March. To gauge this shadow, Cotsworth figured, the pyramid builders needed a flat surface laid on the structure’s north side and marked in a geometrical pattern that allowed them to record the shadow’s daily progress. So Cotsworth took off for Egypt in November 1900 to look for the shadow floor his theory predicted.
And he found it—a pavement of flat stones laid out in half-squares from the base of the pyramid platform to the remains of the old wall that once surrounded the entire complex. The width of every paving stone was close to 4.45 feet, the distance the noontime shadow moved each day as it progressed toward the March vanishing point. This pattern allowed the priests who managed the pyramid complex to count the days of winter and, with a little mathematical manipulation, determine the length of the year fairly exactly.
Cotsworth left Egypt to champion his 13-month calendar, which featured months of 28 days’ length that always began on a Sunday and ended on a Saturday. Cotsworth won the support of George Eastman, founder of the Eastman Kodak camera company, who was convinced that the irrational calendar cost business tremendous sums of money. Eastman’s interest in the calendar, like Cotsworth’s, was practical, not religious or mythological. The British railway statistician understood that an accurate calendar was a great aid to people who depended upon the turn of the seasons to know when the Nile was likely to rise and when to prepare for planting. It took another practical man to demonstrate that the Great Pyramid could be used not only to determine the changing seasons but also to accurately resurvey the land after each annual Nile flood.
THE OLD KINGDOM’S SURVEY CREW
In the late nineteenth century, Robert T. Ballard, an Australian by nationality, was sitting on a train steaming past Giza when he noticed something fascinating about the three principal pyramids. Because the monuments cut clear lines against the sky, and because their angles constantly changed with the viewer’s position, the pyramids could easily have served the ancients as instruments—theodolites, in a surveyor’s vocabulary—for surveying and triangulating the land.
A railroad engineer by profession, Ballard knew a great deal about surveying routes and determining property lines. He realized, too, that property lines would have been no small issue along the Nile, particularly in Lower Egypt, where the river’s annual flood poured over the land and wiped out the markers dividing one farmer’s plot from another. Resetting the boundaries each year would have been a major task, one that the pyramids made easier. The only instrument surveyors would need, Ballard wrote in his grandly titled
The Solution of the Pyramid Problem
, published in 1882, was a moveable scale model of the Great Pyramid in the center of a circular board marked with the cardinal directions. Point the north end of the board toward the north, orient the model so that it shows the same pattern of light and shade as the real pyramid, and read the bearing. It was that easy. Ballard also realized that the pyramids could be used for something surveyors do all the time: measure land by means of right-angle triangles with whole-number sides, such as 3-4-5.
Ballard’s insights underscore the accuracy of a comment by Herodotus in his writing about ancient Egypt. The country was heavily populated along the fertile areas of the Nile Valley—by some estimates, with nearly 700 people per square mile. To create balance and justice, Herodotus writes,
this king divided the land . . . so as to give each one a quadrangle of equal size and . . . on each imposing a tax. But everyone from whose part the river tore anything away . . . he sent overseers to measure out how much the land had become smaller, in order that the owner might pay on what was left. . . . In this way, it appears to me, geometry originated, which passed thence to Greece.
1
Herodotus and Ballard recognized that geometry—a word that comes from Greek roots meaning “measuring the earth”—had its origins not in academic mathematics but in such practical, day-to-day business as determining where one farmer’s fields ended and another’s began. What Ballard didn’t realize, but Herodotus may have, was that this annual geometric exercise came to have religious import. Each year’s flood signaled the return of the watery chaos from which the cosmos had emerged, rising up as the original mound of creation and seeking the justice and order of perfect
ma’at.
Geometry restored the order lost to the flood and returned an off-kilter universe to its proper balance. Geometry gave to the earth the same harmony the pharaoh bestowed upon his subjects.
One name the ancient Egyptians gave their homeland was To-Mera, meaning “the land of the
mr.
” The word
mr
originally referred to the median triangle of a pyramid and by extension to the pyramid itself. The core meaning of this ancient name is that Egypt was the measured land, a region of the planet known by a unique geometry. The people of the Old Kingdom knew the shape of the Two Lands in astounding detail, and they incorporated their knowledge into the design of the Great Pyramid.
THE TWO MEASURED LANDS
As we shall explore, it appears that the Great Pyramid reveals that the ancient Egyptians realized the earth is round. If you were raised on the historical tale of brave Columbus sailing west in his three tiny ships toward a possible plummet off a flat earth into the cosmic void, this statement comes as an almost unbelievable claim to intellectual sophistication in the ancient world. Actually, the story of Columbus and the flat earth tell us more about the backwardness of fifteenth-century Europe than about antiquity. The adepts of ancient Egypt knew full well the earth wasn’t flat, at least 40 centuries before Columbus worked up the courage to bet his life on a theory.
One wonders why it took the Europeans so long, because, frankly, it’s not that difficult to tell that the earth is round, and indeed educated people throughout history realized that the earth is a sphere. Look at the moon when it is full, and you may ask yourself “Why should the earth have a different shape?” Watch a ship steam toward the horizon, and you’ll see its hull disappear long before the last radar dish on the superstructure slips out of view. The stars also reveal the earth’s shape. As you head north from a starting point in the northern hemisphere, the north celestial pole rises in the sky, and all the stars in their nightly transits rise with it. Head south, and they descend. Such an observation requires an explanation.
It’s one the ancient Egyptians were well equipped to work out. They had been dedicated stargazers, Nabta Playa tells us, for at least several millennia by the time the Old Kingdom began. And they inhabited a country that ran north and south. Stars that sit on the horizon in Upper Egypt (to the south) will shine higher in the sky in Lower Egypt (to the north). The Egyptians noticed this difference, and they understood the implications of their observation.
They also used it to site the Great Pyramid—or, perhaps, unknown and undiscovered structures, even more ancient, that underlie it. The Great Pyramid sits at almost exactly 30° north latitude. The operative word is “almost”; the site is slightly south of the actual line. Richard Proctor realized why during his investigations of the astronomical utility of the Great Pyramid. If you journey steadily northward from the equator, the north celestial pole rises in the sky until, at the North Pole, it stands directly overhead. It appears easy enough to measure latitude by determining the angle of the north celestial pole above the horizon. If the north celestial pole lies 30° above the horizon, then the latitude must be 30°. That’s not quite right, however, because the atmosphere gets in the way. When you are gazing at the horizon, you look through more atmosphere than when you look straight up. Because of this slight refraction, sightings of the celestial pole angle have a built-in error that lessens as you move from equator to pole. At 30° north latitude, you would think you are very slightly farther north than you really are. On the other hand, Proctor demonstrated that if you use the sun and shadows to determine your latitude without compensating for atmospheric effects, you will think you are located very slightly south of your actual latitude. The Great Pyramid is about a mile and a third south of perfect alignment with 30° north latitude. Proctor considered this strong evidence that the ancient Egyptians used the circumpolar stars to place themselves along a north-south line on a spherical earth.

Other books

Homecoming by Cooper West
Demons End (Tremble Island) by Lewis, Lynn Ray
Resurrection Man by Sean Stewart
No Strings Attached by Jaci Burton
Minute Zero by Todd Moss
Master of Hawks by Linda E. Bushyager
Darkness Falls by Erin Hunter
The Haunting by Joan Lowery Nixon
Last of the Mighty by Phineas Foxx