The Elegant Universe (21 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
4.35Mb size Format: txt, pdf, ePub

Then, in a breathtaking lecture at the Strings 1995 conference held at the University of Southern California—a lecture that stunned a packed audience of the world’s top physicists—Edward Witten announced a plan for taking the next step, thereby igniting the “second superstring revolution.” String theorists, as of this writing, are working vigorously to sharpen a set of new methods that promise to overcome the theoretical obstacles previously encountered. The difficulties that lie ahead will severely test the technical might of the world’s superstring theorists, but the light at the end of the tunnel, although still distant, may finally be becoming visible.

In this chapter and a number that follow, we shall describe the understanding of string theory that emerged from the first superstring revolution and subsequent work prior to the second superstring revolution. From time to time we will indicate new insights stemming from the latter; our discussion of these most recent advances will come in Chapters 12 and 13.

The Greeks’ Atoms, Again?

As we mentioned at the outset of this chapter and as illustrated in Figure 1.1, string theory claims that if the presumed point-particles of the standard model could be examined with a precision significantly beyond our present capacity, each would be seen to be made of a single, tiny, oscillating loop of string.

For reasons that will become Clear, the length of a typical string loop is about the Planck length, about a hundred billion billion (1020) times smaller than an atomic nucleus. It is no wonder that our present-day experiments are unable to resolve the microscopic stringy nature of matter: strings are minute even on the scales set by subatomic particles. We would need an accelerator to slam matter together with energies some million billion times more powerful than any previously constructed in order to reveal directly that a string is not a point-particle.

We will describe shortly the stunning implications that follow from replacing point-particles by strings, but let’s first address a more basic question: What are strings made of?

There are two possible answers to this question. First, strings are truly fundamental—they are “atoms,” uncuttable constituents, in the truest sense of the ancient Greeks. As the absolute smallest constituents of anything and everything, they represent the end of the line—the last of the Russian matrioshka dolls—in the numerous layers of substructure in the microscopic world. From this perspective, even though strings have spatial extent, the question of their composition is without any content. Were strings to be made of something smaller they would not be fundamental. Instead, whatever strings were composed of would immediately displace them and lay claim to being an even more basic constituent of the universe. Using our linguistic analogy, paragraphs are made of sentences, sentences are made of words, and words are made of letters. What makes up a letter? From a linguistic standpoint, that’s the end of the line. Letters are letters—they are the fundamental building blocks of written language; there is no further substructure. Questioning their composition has no meaning. Similarly, a string is simply a string—as there is nothing more fundamental, it can’t be described as being composed of any other substance. That’s the first answer. The second answer is based on the simple fact that as yet we do not know if string theory is a correct or final theory of nature. If string theory is truly off the mark, then, well, we can forget strings and the irrelevant question of their composition. Although this is a possibility, research since the mid-1980s overwhelmingly points toward its being extremely unlikely. But history surely has taught us that every time our understanding of the universe deepens, we find yet smaller microscopic ingredients constituting a finer level of matter. And so another possibility, should strings fail to be the final theory, is that they are one more layer in the cosmic onion, a layer that becomes visible at the Planck length, although not the final layer. In this case, strings could be made up of yet-smaller structures. String theorists have raised and continue to pursue this possibility. To date there are intriguing hints in theoretical studies that strings may have further substructure, but there is as yet no definitive evidence. Only time and intense research will supply the final word on this question.

Aside from a few speculations in Chapters 12 and 15, for our discussion here we approach strings in the manner proposed in the first answer—that is, we will take strings to be nature’s most fundamental ingredient.

Unification through String Theory

Besides its inability to incorporate the gravitational force, the standard model has another shortcoming: There is no explanation for the details of its construction. Why did nature select the particular list of particles and forces outlined in previous chapters and recorded in Tables 1.1 and 1.2? Why do the 19 parameters that describe these ingredients quantitatively have the values that they do? You can’t help feeling that their number and detailed properties seem so arbitrary. Is there a deeper understanding lurking behind these seemingly random ingredients, or were the detailed physical properties of the universe “chosen” by happenstance?

The standard model itself cannot possibly offer an explanation since it takes the list of particles and their properties as experimentally measured input. Just as the performance of the stock market cannot be used to determine the value of your portfolio without the input data of your initial investments, the standard model cannot be used to make any predictions without the input data of the fundamental particle properties.6 After experimental particle physicists fastidiously measure these data, theorists can then use the standard model to make testable predictions, such as what should happen when particular particles are slammed together in an accelerator. But the standard model can no more explain the fundamental particle properties of Tables 1.1 and 1.2 than the Dow Jones average today can explain your initial investment in stocks ten years ago.

In fact, had experiments revealed a somewhat different particle content in the microscopic world, possibly interacting with somewhat different forces, these changes could have been fairly easily incorporated in the standard model by providing the theory with different input parameters. The structure of the standard model, in this sense, is too flexible to be able to explain the properties of the elementary particles, as it could have accommodated a range of possibilities.

String theory is dramatically different. It is a unique and inflexible theoretical edifice. It requires no input beyond a single number, described below, that sets the benchmark scale for measurements. All properties of the microworld are within the realm of its explanatory power. To understand this, let’s first think about more familiar strings, such as those on a violin. Each such string can undergo a huge variety (in fact, infinite in number) of different vibrational patterns known as resonances, such as those shown in Figure 6.1. These are the wave patterns whose peaks and troughs are evenly spaced and fit perfectly between the string’s two fixed endpoints. Our ears sense these different resonant vibrational patterns as different musical notes. The strings in string theory have similar properties. There are resonant vibrational patterns that the string can support by virtue of their evenly spaced peaks and troughs exactly fitting along its spatial extent. Some examples are given in Figure 6.2. Here’s the central fact: Just as the different vibrational patterns of a violin string give rise to different musical notes, the different vibrational patterns of a fundamental string give rise to different masses and force charges. As this is a crucial point, let’s say it again. According to string theory, the properties of an elementary “particle”—its mass and its various force charges—are determined by the precise resonant pattern of vibration that its internal string executes.

It’s easiest to understand this association for a particle’s mass. The energy of a particular vibrational string pattern depends on its amplitude—the maximum displacement between peaks and troughs—and its wavelength—the separation between one peak and the next. The greater the amplitude and the shorter the wavelength, the greater the energy. This reflects what you would expect intuitively—more frantic vibrational patterns have more energy, while less frantic ones have less energy. We give a couple of examples in Figure 6.3. This is again familiar, as violin strings that are plucked more vigorously will vibrate more wildly, while those plucked more gingerly will vibrate more gently. Now, from special relativity we know that energy and mass are two sides of the same coin: Greater energy means greater mass, and vice versa. Thus, according to string theory, the mass of an elementary particle is determined by the energy of the vibrational pattern of its internal string. Heavier particles have internal strings that vibrate more energetically, while lighter particles have internal strings that vibrate less energetically.

Since the mass of a particle determines its gravitational properties, we see that there is a direct association between the pattern of string vibration and a particle’s response to the gravitational force. Although the reasoning involved is somewhat more abstract, physicists have found that a similar alignment exists between other detailed aspects of a string’s pattern of vibration and its properties vis à vis other forces. The electric charge, the weak charge, and the strong charge carried by a particular string, for instance, are determined by the precise way it vibrates. Moreover, exactly the same idea holds for the messenger particles themselves. Particles like photons, weak gauge bosons, and gluons are yet other resonant patterns of string vibration. And of particular importance, among the vibrational string patterns, one matches perfectly the properties of the graviton, ensuring that gravity is an integral part of string theory.7

So we see that, according to string theory, the observed properties of each elementary particle arise because its internal string undergoes a particular resonant vibrational pattern. This perspective differs sharply from that espoused by physicists before the discovery of string theory; in the earlier perspective the differences among the fundamental particles were explained by saying that, in effect, each particle species was “cut from a different fabric.” Although each particle was viewed as elementary, the kind of “stuff” each embodied was thought to be different. Electron “stuff,” for example, had negative electric charge, while neutrino “stuff’ had no electric charge. String theory alters this picture radically by declaring that the “stuff” of all matter and all forces is the same. Each elementary particle is composed of a single string—that is, each particle is a single string—and all strings are absolutely identical. Differences between the particles arise because their respective strings undergo different resonant vibrational patterns. What appear to be different elementary particles are actually different “notes” on a fundamental string. The universe—being composed of an enormous number of these vibrating strings—is akin to a cosmic symphony.

This overview shows how string theory offers a truly wonderful unifying framework. Every particle of matter and every transmitter of force consists of a string whose pattern of vibration is its “fingerprint.” Because every physical event, process, or occurrence in the universe is, at its most elementary level, describable in terms of forces acting between these elementary material constituents, string theory provides the promise of a single, all-inclusive, unified description of the physical universe: a theory of everything (T.O.E.).

The Music of String Theory

Even though string theory does away with the previous concept of structureless elementary particles, old language dies hard, especially when it provides an accurate description of reality down to the most minute of distance scales. Following the common practice of the field we shall therefore continue to refer to “elementary particles,” yet we will always mean “what appear to be elementary particles but are actually tiny pieces of vibrating string.” In the preceding section we proposed that the masses and the force charges of such elementary particles are the result of the way in which their respective strings are vibrating. This leads us to the following realization: If we can work out precisely the allowed resonant vibrational patterns of fundamental strings—the “notes,” so to speak, that they can play—we should be able to explain the observed properties of the elementary particles. For the first time, therefore, string theory sets up a framework for explaining the properties of the particles observed in nature.

At this stage, then, we should “grab hold” of a string and “pluck” it in all sorts of ways to determine the possible resonant patterns of vibration. If string theory is right, we should find that the possible patterns yield exactly the observed properties of the matter and force particles in Tables 1.1 and 1.2. Of course, a string is too small to carry out this experiment literally as described. Rather, by using mathematical descriptions we can theoretically pluck a string. In the mid-1980s, many string adherents believed that the mathematical analysis required for doing this was on the verge of being able to explain every detailed property of the universe on its most microscopic level. Some enthusiastic physicists declared that the T.O.E. had finally been discovered. More than a decade of hindsight has shown that the euphoria generated by this belief was premature. String theory has the makings of a T.O.E., but a number of hurdles remain, preventing us from deducing the spectrum of string vibrations with the precision necessary to compare with experimental results. At the present time, therefore, we do not know if the fundamental characteristics of our universe, summarized in Tables 1.1 and 1.2, can be explained by string theory. As we will discuss in Chapter 9, under certain assumptions that we will clearly state, string theory can give rise to a universe with properties that are in qualitative agreement with the known particle and force data, but extracting detailed numerical predictions from the theory is currently beyond our abilities. And so, although the framework of string theory, unlike that of the point-particle standard model, is capable of giving an explanation for why the particles and forces have the properties they do, we have not, as yet, been able to extract it. But remarkably, string theory is so rich and far-reaching that, even though we cannot yet determine its most detailed properties, we are able to gain insight into a wealth of the new physical phenomena that follow from the theory, as we will see in subsequent chapters.

Other books

Rainsinger by Barbara Samuel, Ruth Wind
Kerrigan in Copenhagen by Thomas E. Kennedy
The Pledge by Chandra Sparks Taylor
Score - A Stepbrother Romance by Daire, Caitlin, Alpha, Alyssa
Forbidden Drink by Nicola Claire
Embrace the Night by Roane, Caris
The Secret Mother by Victoria Delderfield