The Elegant Universe (29 page)

Read The Elegant Universe Online

Authors: Brian Greene

BOOK: The Elegant Universe
4.33Mb size Format: txt, pdf, ePub

The most promising of the higher-dimensional proposals were those that also incorporated supersymmetry. Physicists hoped that the partial cancelling of the most severe quantum fluctuations, arising from the pairing of superpartner particles, would help to soften the hostilities between gravity and quantum mechanics. They coined the name higher-dimensional supergravity to describe those theories encompassing gravity, extra dimensions, and supersymmetry.

As had been the case with Kaluza’s original attempt, various versions of higher-dimensional supergravity looked quite promising at first. The new equations resulting from the extra dimensions were strikingly reminiscent of those used in the description of electromagnetism, and the strong and the weak forces. But detailed scrutiny showed that the old conundrums persisted. Most importantly, the pernicious short-distance quantum undulations of space were lessened by supersymmetry, but not sufficiently to yield a sensible theory. Physicists also found it difficult to find a single, sensible, higher-dimensional theory incorporating all features of forces and matter.7 It gradually became clear that bits and pieces of a unified theory were surfacing, but that a crucial element capable of tying them all together in a quantum-mechanically consistent manner was missing. In 1984 this missing piece—string theory—dramatically entered the story and took center stage.

More Dimensions and String Theory

By now you should be convinced that our universe may have additional curled-up spatial dimensions; certainly, so long as they are small enough, nothing rules them out. But extra dimensions may strike you as an artifice. Our inability to probe distances smaller than a billionth of a billionth of a meter permits not only extra tiny dimensions but all manner of whimsical possibilities as well-even a microscopic civilization populated by even tinier green people. While the former certainly seems more rationally motivated than the latter, the act of postulating either of these experimentally untested-and, at present, untestable—possibilities might seem equally arbitrary.

Such was the case until string theory. Here is a theory that resolves the central dilemma confronting contemporary physics—the incompatibility between quantum mechanics and general relativity—and that unifies our understanding of all of nature’s fundamental material constituents and forces. But to accomplish these feats, it turns out that string theory requires that the universe have extra space dimensions.

Here’s why. One of the main insights of quantum mechanics is that our predictive power is fundamentally limited to asserting that such-and-such outcome will occur with such-and-such probability. Although Einstein felt that this was a distasteful feature of our modern understanding, and you may agree, it certainly appears to be fact. Let’s accept it. Now, we all know that probabilities are always numbers between 0 and 1—equivalently, when expressed as percentages, probabilities are numbers between 0 and 100. Physicists have found that a key signal that a quantum-mechanical theory has gone haywire is that particular calculations yield “probabilities” that are not within this acceptable range. For instance, we mentioned earlier that a sign of the grinding incompatibility between general relativity and quantum mechanics in a point-particle framework is that calculations result in infinite probabilities. As we have discussed, string theory cures these infinities. But what we have not as yet mentioned is that a residual, somewhat more subtle problem still remains. In the early days of string theory physicists found that certain calculations yielded negative probabilities, which are also outside of the acceptable range. So, at first sight, string theory appeared to be awash in its own quantum-mechanical hot water.

With stubborn determination, physicists sought and found the cause of this unacceptable feature. The explanation begins with a simple observation. If a string is constrained to lie on a two-dimensional surface—such as the surface of a table or a garden hose—the number of independent directions in which it can vibrate is reduced to two: the left-right and back-forth dimensions along the surface. Any vibrational pattern that remains on the surface involves some combination of vibrations in these two directions. Correspondingly, we see that this also means that a string in Flatland, the Garden-hose universe, or in any other two-dimensional universe, is also constrained to vibrate in a total of two independent spatial directions. If, however, the string is allowed to leave the surface, the number of independent vibrational directions increases to three, since the string then can also oscillate in the up-down direction. Equivalently, in a universe with three spatial dimensions, a string can vibrate in three independent directions. Although it gets harder to envision, the pattern continues: In a universe with ever more spatial dimensions, there are ever more independent directions in which it can vibrate.

We emphasize this fact of string vibrations because physicists found that the troublesome calculations were highly sensitive to the number of independent directions in which a string can vibrate. The negative probabilities arose from a mismatch between what the theory required and what reality seemed to impose: The calculations showed that if strings could vibrate in nine independent spatial directions, all of the negative probabilities would cancel out. Well, that’s great in theory, but so what? If string theory is meant to describe our world with three spatial dimensions, we still seem to be in trouble.

But are we? Taking a more than half-century-old lead, we see that Kaluza and Klein provide a loophole. Since strings are so small, not only can they vibrate in large, extended dimensions, they can also vibrate in ones that are tiny and curled up. And so we can meet the nine-space-dimension requirement of string theory in our universe, by assuming—à la Kaluza and Klein—that in addition to our familiar three extended spatial dimensions there are six other curled-up spatial dimensions. In this manner, string theory, which appeared to be on the brink of elimination from the realm of physical relevance, is saved. Moreover, rather than just postulating the existence of extra dimensions, as had been done by Kaluza, Klein, and their followers, string theory requires them. For string theory to make sense, the universe should have nine space dimensions and one time dimension, for a total of ten dimensions. In this way, Kaluza’s 1919 proposal finds its most convincing and powerful forum.

Some Questions

This raises a number of questions. First, why does string theory require the particular number of nine space dimensions to avoid nonsensical probability values? This is probably the hardest question in string theory to answer without appealing to mathematical formalism. A straightforward string theory calculation reveals this answer, but no one has an intuitive, nontechnical explanation for the particular number that emerges. The physicist Ernest Rutherford once said, in essence, that if you can’t explain a result in simple, nontechnical terms, then you don’t really understand it. He wasn’t saying that this means your result is wrong; rather, he was saying that it means you do not fully understand its origin, meaning, or implications. Perhaps this is true regarding the extradimensional character of string theory. (In fact, let’s take this opportunity to brace—parenthetically—for a central aspect of the second superstring revolution that we will discuss in Chapter 12. The calculation underlying the conclusion that there are ten spacetime dimensions—nine space and one time—turns out to be approximate. In the mid-1990s, Witten, based on his own insights and previous work by Michael Duff from Texas A&M University and Chris Hull and Paul Townsend from Cambridge University, gave convincing evidence that the approximate calculation actually misses one space dimension: String theory, he argued to most string theorists’ amazement, actually requires ten space dimensions and one time dimension, for a total of eleven dimensions. We will ignore this important result until Chapter 12, as it will have little direct bearing on the material we develop before then.)

Second, if the equations of string theory (or, more precisely, the approximate equations guiding our pre-Chapter 12 discussion) show that the universe has nine space dimensions and one time dimension, why is it that three space (and one time) dimensions are large and extended while all of the others are tiny and curled up? Why aren’t they all extended, or all curled up, or some other possibility in between? At present no one knows the answer to this question. If string theory is right, we should eventually be able to extract the answer, but as yet our understanding of the theory is not refined enough to reach this goal. That’s not to say that there haven’t been valiant attempts to explain it. For instance, from a cosmological perspective, we can imagine that all of the dimensions start out being tightly curled up and then, in a big bang-like explosion, three spatial dimensions and one time dimension unfurl and expand to their present large extent while the other spatial dimensions remain small. Rough arguments have been put forward as to why only three space dimensions grow large, as we will discuss in Chapter 14, but it’s fair to say that these explanations are only in the formative stages, In what follows, we will assume that all but three space dimensions are curled up, in accordance with what we see around us. A primary goal of modern research is to establish that this assumption emerges from the theory itself.

Third, given the requirement of numerous extra dimensions, is it possible that some are additional time dimensions, as opposed to additional space dimensions? If you think about this for a moment, you will see that it’s a truly bizarre possibility. We all have a visceral understanding of what it means for the universe to have multiple space dimensions, since we live in a world in which we constantly deal with a plurality—three. But what would it mean to have multiple times? Would one align with time as we presently experience it psychologically while the other would somehow be “different?”

It gets even stranger when you think about a curled-up time dimension. For instance, if a tiny ant walks around an extra space dimension that is curled up like a circle, it will find itself returning to the same position over and over again as it traverses complete circuits. This holds little mystery as we are familiar with the ability to return, should we so choose, to the same location in space as often as we like. But, if a curled-up dimension is a time dimension, traversing it means returning, after a temporal lapse, to a prior instant in time. This, of course, is well beyond the realm of our experience. Time, as we know it, is a dimension we can traverse in only one direction with absolute inevitability, never being able to return to an instant after it has passed. Of course, it might be that curled-up time dimensions have vastly different properties from the familiar, vast time dimension that we imagine reaching back to the creation of the universe and forward to the present moment. But, in contrast to extra spatial dimensions, new and previously unknown time dimensions would clearly require an even more monumental restructuring of our intuition. Some theorists have been exploring the possibility of incorporating extra time dimensions into string theory, but as yet the situation is inconclusive. In our discussion of string theory, we will stick to the more “conventional” approach in which all of the curled-up dimensions are space dimensions, but the intriguing possibility of new time dimensions could well play a role in future developments.

The Physical Implications of Extra Dimensions

Years of research, dating hack to Kaluza’s original paper, have shown that even though any extra dimensions that physicists propose must be smaller than we or our equipment can directly “see” (since we haven’t seen them), they do have important indirect effects on the physics that we observe. In string theory, this connection between the microscopic properties of space and the physics we observe is particularly transparent.

To understand this, you need to recall that masses and charges of particles in string theory are determined by the possible resonant vibrational string patterns. Picture a tiny string as it moves and oscillates, and you will realize that the resonant patterns are influenced by its spatial surroundings. Think, for example, of ocean waves. Out in the grand expanse of the open ocean, isolated wave patterns are relatively free to form and travel this way or that. This is much like the vibrational patterns of a string as it moves through large, extended spatial dimensions. As in Chapter 6, such a string is equally free to oscillate in any of the extended directions at any moment. But if an ocean wave passes through a more cramped spatial environment, the detailed form of its wave motion will surely be affected by, for example, the depth of the water, the placement and shape of the rocks encountered, the canals through which the water is channeled, and so on. Or, think of an organ pipe or a French horn. The sounds that each of these instruments can produce are a direct consequence of the resonant patterns of vibrating air streams in their interior; these are determined by the precise size and shape of the spatial surroundings within the instrument through which the air streams are channeled. Curled-up spatial dimensions have a similar impact on the possible vibrational patterns of a string. Since tiny strings vibrate through all of the spatial dimensions, the precise way in which the extra dimensions are twisted up and curled back on each other strongly influences and tightly constrains the possible resonant vibrational patterns. These patterns, largely determined by the extradimensional geometry, constitute the array of possible particle properties observed in the familiar extended dimensions. This means that extradimensional geometry determines fundamental physical attributes like particle masses and charges that we ovserve in the usual three large space dimensions of common experience.

This is such a deep and important point that we say it once again, with feeling. According to string theory, the universe is made up of tiny strings whose resonant patterns of vibration are the microscopic origin of particle masses and force charges. String theory also requires extra space dimensions that must be curled up to a very small size to be consistent with our never having seen them. But a tiny string can probe a tiny space. As a string moves about, oscillating as it travels, the geometrical form of the extra dimensions plays a critical role in determining resonant patterns of vibration. Because the patterns of string vibrations appear to us as the masses and charges of the elementary particles, we conclude that these fundamental properties of the universe are determined, in large measure, by the geometrical size and shape of the extra dimensions. That’s one of the most far-reaching insights of string theory.

Other books

Versailles by Kathryn Davis
Cain's Crusaders by T.R. Harris
Holy Fools by Joanne Harris
So Big by Edna Ferber
I Dare You by Desiree Holt
Crow Mountain by Lucy Inglis
The Gambler by Greiman, Lois