The Information (7 page)

Read The Information Online

Authors: James Gleick

Tags: #Non-Fiction

BOOK: The Information
12.76Mb size Format: txt, pdf, ePub

In the Far North, where there is snow, all bears are white.

 

Novaya Zembla is in the Far North and there is always snow there.

 

What color are the bears?

 
 

Typical response: “I don’t know. I’ve seen a black bear. I’ve never seen any others.… Each locality has its own animals.”

By contrast, a man who has just learned to read and write responds, “To go by your words, they should all be white.” To go by your words—in that phrase, a level is crossed. The information has been detached from any person, detached from the speaker’s experience. Now it lives in the words, little life-support modules. Spoken words also transport information, but not with the self-consciousness that writing brings. Literate people take for granted their own awareness of words, along with the array of word-related machinery: classification, reference, definition. Before literacy, there is nothing obvious about such techniques. “Try to explain to me what a tree is,” Luria says, and a peasant replies, “Why should I? Everyone knows what a tree is, they don’t need me telling them.”

“Basically the peasant was right,”

Ong comments. “There is no way to refute the world of primary orality. All you can do is walk away from it into literacy.”

It is a twisting journey from things to words, from words to categories, from categories to metaphor and logic. Unnatural as it seemed to define
tree
, it was even trickier to define
word
, and helpful ancillary words like
define
were not at first available, the need never having existed. “In the infancy of logic, a form of thought has to be invented before the content
can be filled up,”

said Benjamin Jowett, Aristotle’s nineteenth-century translator. Spoken languages needed further evolution.

Language and reasoning fit so well that users could not always see the flaws and gaps. Still, as soon as any culture invented logic, paradoxes appeared. In China, nearly contemporaneously with Aristotle, the philosopher Gongsun Long captured some of these in the form of a dialogue, known as “When a White Horse Is Not a Horse.”

It was written on bamboo strips, tied with string, before the invention of paper. It begins:

Can it be that a white horse is not a horse
?

 

It can.

 

How
?

 

“Horse” is that by means of which one names the shape. “White” is that by means of which one names the color. What names the color is not what names the shape. Hence, I say that a white horse is not a horse.

 

On its face, this is unfathomable. It begins to come into focus as a statement about language and logic. Gongsun Long was a member of the Mingjia, the School of Names, and his delving into these paradoxes formed part of what Chinese historians call the “language crisis,” a running debate over the nature of language. Names are not the things they name. Classes are not coextensive with subclasses. Thus innocent-seeming inferences get derailed: “a man dislikes white horses” does not imply “a man dislikes horses.”

You think that horses that are colored are not horses. In the world, it is not the case that there are horses with no color. Can it be that there are no horses in the world?

 
 

The philosopher shines his light on the process of abstracting into classes based on properties: whiteness; horsiness. Are these classes part of reality, or do they exist only in language?

Horses certainly have color. Hence, there are white horses. If it were the case that horses had no color, there would simply be horses, and then how could one select a white horse? A white horse is a horse and white. A horse and a white horse are different. Hence, I say that a white horse is not a horse.

 
 

Two millennia later, philosophers continue to struggle with these texts. The paths of logic into modern thought are roundabout, broken, and complex. Since the paradoxes seem to be in language, or about language, one way to banish them was to purify the medium: eliminate ambiguous words and woolly syntax, employ symbols that were rigorous and pure. To turn, that is, to mathematics. By the beginning of the twentieth century, it seemed that only a system of purpose-built symbols could make logic work properly—free of error and paradoxes. This dream was to prove illusory; the paradoxes would creep back in, but no one could hope to understand until the paths of logic and mathematics converged.

Mathematics, too, followed from the invention of writing. Greece is often thought of as the springhead for the river that becomes modern mathematics, with all its many tributaries down the centuries. But the Greeks themselves alluded to another tradition—to them, ancient—which they called Chaldean, and which we understand to be Babylonian. That tradition vanished into the sands, not to surface until the end of the nineteenth century, when tablets of clay were dug up from the mounds of lost cities.

First there were scores, then thousands of tablets, typically the size of a human hand, etched with a distinctive, edgy, angular writing called cuneiform, “wedge shaped.” Mature cuneiform was neither pictographic (the symbols were spare and abstract) nor alphabetic (they were far too numerous). By 3000 BCE a system with about seven hundred symbols flourished in Uruk, the walled city, probably the largest in the world, home of the
hero-king Gilgamesh, in the alluvial marshes near the Euphrates River. German archeologists excavated Uruk in a series of digs all through the twentieth century. The materials for this most ancient of information technologies lay readily at hand. With damp clay held in one hand and a stylus of sharpened reed in the other, a scribe would imprint tiny characters in columns and rows.

The result: cryptic messages from an alien culture. They took generations to decipher. “Writing, like a theater curtain going up on these dazzling civilizations, lets us stare directly but imperfectly at them,”

writes the psychologist Julian Jaynes. Some Europeans took umbrage at first. “To the Assyrians, the Chaldeans, and Egyptians,” wrote the seventeenth-century divine Thomas Sprat, “we owe the Invention” but also the “Corruption of knowledge,”

when they concealed it with their strange scripts. “It was the custom of their Wise men, to wrap up their Observations on Nature, and the Manners of Men, in the dark Shadows of
Hieroglyphicks
” (as though friendlier ancients would have used an alphabet more familiar to Sprat). The earliest examples of cuneiform baffled archeologists and paleolinguists the longest, because the first language to be written, Sumerian, left no other traces in culture or speech. Sumerian turned out to be a linguistic rarity, an isolate, with no known descendants. When scholars did learn to read the Uruk tablets, they found them to be, in their way, humdrum: civic memoranda, contracts and laws, and receipts and bills for barley, livestock, oil, reed mats, and pottery. Nothing like poetry or literature appeared in cuneiform for hundreds of years to come. The tablets were the quotidiana of nascent commerce and bureaucracy. The tablets not only recorded the commerce and the bureaucracy but, in the first place, made them possible.

A CUNEIFORM TABLET

 
 

Even then, cuneiform incorporated signs for counting and measurement. Different characters, used in different ways, could denote numbers and weights. A more systematic approach to the writing of numbers did not take shape until the time of Hammurabi, 1750 BCE, when Mesopotamia was unified around the great city of Babylon. Hammurabi himself was probably the first literate king, writing his own cuneiform rather than depending on scribes, and his empire building manifested the connection between writing and social control. “This process of conquest and influence is made possible by letters and tablets and stelae in an abundance that had never been known before,”

Jaynes declares. “Writing was a new method of civil direction, indeed the model that begins our own memo-communicating government.”

The writing of numbers had evolved into an elaborate system. Numerals were composed of just two basic parts, a vertical wedge for 1 (
) and an angle wedge for 10 (
). These were combined to form the standard characters, so that
represented 3 and
represented 16, and so on. But the Babylonian system was not decimal, base 10; it was sexagesimal, base 60. Each of the numerals from 1 to 60 had its own character. To form large numbers, the Babylonians used numerals in places:
was 70 (one 60 plus ten 1s);
was 616 (ten 60s plus sixteen 1s), and so on.

None of this was clear when the tablets first began to surface. A basic theme with variations, encountered many times, proved to be multiplication tables. In a sexagesimal system these had to cover the numbers from 1 to 19 as well as 20, 30, 40, and 50. Even more difficult to unravel were tables of reciprocals, making possible division and fractional numbers: in the 60-based system, reciprocals were 2:30, 3:20, 4:15, 5:12 … and then, using extra places, 8:7,30, 9:6,40, and so on.

Other books

Common Ground by Rob Cowen
Epoch by Timothy Carter
Nosferatu the Vampyre by Paul Monette
In the Bad Boy's Bed by Sophia Ryan
Afterworlds by Scott Westerfeld
Then Came You by Jennifer Weiner
Lynx Loving by S. K. Yule
When Light Breaks by Patti Callahan Henry