El universo elegante (22 page)

Read El universo elegante Online

Authors: Brian Greene

Tags: #Divulgación Científica

BOOK: El universo elegante
13.05Mb size Format: txt, pdf, ePub

La interpretación probabilística tiene la virtud de que, si una onda electrónica hace lo que otras pueden hacer, —por ejemplo, chocar contra algún obstáculo y desarrollar todo tipo de ondulaciones diferentes— esto no significa que el electrón se haya hecho añicos. Al contrario, significa que existen varios lugares donde se
podría
encontrar ese electrón con una probabilidad nada despreciable. En la práctica esto significa que si un experimento concreto relativo a un electrón se repite una y otra vez de una manera totalmente idéntica,
no
se obtendrá una y otra vez la misma respuesta para la posición precisa del electrón. Por el contrario, las sucesivas repeticiones del experimento producirán toda una variedad de resultados diferentes, cumpliéndose la propiedad de que el número de veces que se encuentra el electrón en una posición dada depende de la forma de la onda de probabilidad de dicho electrón. Si la onda de probabilidad (más exactamente, el cuadrado de la onda de probabilidad) es en el lugar A el doble que en el lugar B, entonces la teoría predice que en una sucesión de muchas repeticiones del experimento el electrón se encontrará en el lugar A con una frecuencia que es el doble de las veces que se encontrará en el lugar B. No se pueden predecir resultados exactos para los experimentos; lo más que podemos hacer es predecir la probabilidad de que un resultado determinado
podría
obtenerse.

Aun así, en la medida en que podamos determinar matemáticamente la forma precisa de las ondas de probabilidad, sus predicciones probabilísticas
se pueden
comprobar repitiendo un determinado experimento numerosas veces, midiendo así experimentalmente la probabilidad de conseguir un resultado concreto u otro. Unos pocos meses después de que De Broglie formulara su sugerencia, Schrödinger dio el paso decisivo hacia este objetivo, desarrollando una fórmula que determina la forma y la evolución de las ondas de probabilidad o, según el nombre que recibieron, las
funciones de onda
. No se tardó mucho tiempo en utilizar la ecuación de Schrödinger y la interpretación probabilística para realizar unas predicciones asombrosamente exactas. Por consiguiente, hacia 1927 la inocencia clásica ya se había perdido. Habían pasado los días de un universo con mecanismo de relojería cuyos componentes individuales se pusieron en movimiento en algún momento del pasado y se sometían obedientemente a un destino que era ineludible y estaba determinado de manera única. De acuerdo con la mecánica cuántica, el universo evoluciona según un formalismo matemático riguroso y preciso, pero este marco sólo determina la probabilidad de que llegue algún futuro concreto, sin decir qué futuro será realmente el que llegue.

Muchos consideraron esta conclusión preocupante o incluso totalmente inaceptable. Einstein fue uno de ellos. En uno de los pronunciamientos más tradicionales de la física, Einstein advertía a los incondicionales de la teoría cuántica que «Dios no juega a los dados con el universo». Pensaba que la probabilidad estaba apareciendo en el ámbito de la física fundamental por una sutil versión de la razón por la que aparece en la rueda de la ruleta: un cierto estado incompleto que está en la base de nuestra capacidad de comprender. En el universo, según el punto de vista de Einstein, no había espacio para un futuro cuya forma exacta incluye un elemento aleatorio. La física debía predecir cómo evoluciona el universo, y no meramente la probabilidad de que alguna evolución particular pueda producirse. Sin embargo, todos los experimentos, uno tras otro —alguno de los más convincentes fueron realizados después de su muerte— confirmaron de manera clara que Einstein estaba equivocado. Como ha dicho el físico teórico británico Stephen Hawking, en este punto «Einstein estaba confundido, no la teoría cuántica».
[28]

No obstante, el debate sobre lo que realmente significa la mecánica cuántica continúa realizándose. Todo el mundo está de acuerdo en cómo utilizar las ecuaciones de la teoría cuántica para realizar predicciones exactas. Pero no hay consenso en lo que significa realmente tener ondas de probabilidad, ni tampoco en cómo «elige» una partícula cuál de sus muchos futuros posibles ha de seguir, ni siquiera en si realmente elige o, por el contrario, se escinde en fragmentos como un afluente que se bifurca para vivir todos los futuros posibles en un campo, siempre en expansión, de universos paralelos. Estas cuestiones de interpretación merecen por sí solas y de pleno derecho una discusión que ocuparía todo un libro y, de hecho, hay una gran cantidad de libros excelentes que se adhieren a uno u otro modo de pensar sobre la teoría cuántica. Pero lo que es innegable es que, independientemente de cómo interprete cada uno la mecánica cuántica, ésta pone de manifiesto indiscutiblemente que el universo se basa en principios que, desde la perspectiva de nuestra experiencia cotidiana, resultan extraños.

La metalección que ofrecen conjuntamente la relatividad y la mecánica cuántica dice que, cuando comprobamos a fondo los funcionamientos fundamentales que se dan en el universo, podemos descubrir aspectos que son muy diferentes de lo que esperamos. La audacia de formular preguntas profundas puede requerir una flexibilidad imprevista si vamos a aceptar las respuestas.

La perspectiva de Feynman

Richard Feynman fue uno de los físicos teóricos más importantes que han existido desde Einstein. Aceptó plenamente la esencia probabilística de la mecánica cuántica, pero en los años que siguieron a la Segunda Guerra Mundial aportó un nuevo y poderoso modo de pensar en la teoría cuántica. Tomando como punto de partida las predicciones numéricas, la perspectiva de Feynman
concuerda exactamente
con todo lo que se había planteado anteriormente. Sin embargo; su formulación es bastante diferente. A continuación, vamos a explicarla en el contexto del experimento de la doble rendija para electrones.

Lo que preocupa con respecto a la Figura 4.8 viene dado por el hecho de que consideramos que cada electrón atraviesa, o bien la rendija de la izquierda, o bien la de la derecha, por lo que esperamos la unión de las Figuras 4.4 y 4.5, como se ve en la Figura 4.6, para representar los datos resultantes de una manera exacta. Un electrón que atraviese la rendija de la derecha no debería preocuparse de que haya también una rendija a la izquierda, y viceversa. Pero, de alguna forma lo hace. El espectro de interferencia que se genera requiere una superposición y un entremezclado entre
algo
que es sensible a ambas rendijas, aunque disparemos los electrones de uno en uno. Schrödinger, De Broglie y Born explicaron este fenómeno asociando una onda de probabilidad a cada electrón. Como las ondas del agua de la Figura 4.7, la onda de probabilidad del electrón «ve» ambas rendijas y está sometida al mismo tipo de interferencia por entremezclado. Los lugares donde la onda de probabilidad se ve aumentada por el entremezclado, como los lugares de empuje significativo de la Figura 4.7, son lugares en que es probable encontrar al electrón; los lugares donde la onda de probabilidad disminuye por el entremezclado, como los lugares de mínimo o nulo empuje de la Figura 4.7, son lugares en que es improbable o imposible que se encuentre el electrón. Los electrones chocan de uno en uno contra la pantalla fosforescente, distribuyéndose de acuerdo con su perfil probabilístico, y así crean un espectro de interferencias como el que se ve en la Figura 4.8.

Feynman tomó un camino diferente. Desafió la suposición clásica fundamental según la cual cada electrón, o bien atraviesa la rendija izquierda, o la derecha. Se podría pensar que esto es una propiedad tan básica de cómo funcionan las cosas que el desafío resulta fatuo. Después de todo, ¿no se podría
mirar
en la zona que se encuentra entre ambas rendijas y la pantalla fosforescente, para aclarar cuál es la rendija que atraviesa cada electrón? Esto se puede hacer, pero de esa manera
se modifica
el experimento. Para
ver
el electrón se ha de
hacerle
algo —por ejemplo se puede iluminar, es decir, hacer que unos fotones reboten sobre él—. Ahora bien, con las escalas de la vida cotidiana, los fotones actúan como pequeñas sondas insignificantes que rebotan sobre los árboles, las obras de arte y las personas, sin producir esencialmente ningún efecto sobre el estado de movimiento de esos cuerpos materiales comparativamente grandes. Pero los electrones son pequeños manojos de materia. Independientemente de la cautela con que se lleve adelante la decisión relativa a qué rendija se ha de atravesar, los fotones que hacen salir al electrón necesariamente afectan a su movimiento posterior. Y este cambio en el movimiento cambia también los resultados del experimento. Si perturbamos el experimento justo lo suficiente para determinar la rendija a través de la cual pasa cada electrón, los experimentos muestran que los resultados cambian con respecto a los de la Figura 4.8 y se hacen más parecidos a los de la Figura 4.6. La teoría cuántica garantiza que, una vez ha quedado establecido que cada electrón ha atravesado, o bien la rendija de la izquierda o la de la derecha, la interferencia entre las dos rendijas desaparece.

Y así, resulta que Feynman tenía razón al formular su desafío ya que —aunque nuestra experiencia del mundo parece exigir que cada electrón atraviese por una u otra rendija— hacia finales de la década de 1920, los físicos descubrieron que cualquier intento de verificar esta cualidad aparentemente básica de la realidad arruina el experimento.

Feynman afirmó que cada uno de los electrones que se abren paso hacia la pantalla fosforescente atraviesa realmente
ambas
rendijas. Suena como una locura, pero espere y verá: puede ser aún más fuerte. Feynman argumentó que, mientras viaja desde la fuente hasta un punto determinado de la pantalla fosforescente, cada electrón en realidad atraviesa
todas las trayectorias posibles simultáneamente
; en la Figura 4.10 se representan algunas de estas trayectorias.

Figura 4.10
Según la formulación de Feynman de la mecánica cuántica, se debe considerar que las partículas se desplazan de un lugar a otro recorriendo todas las trayectorias posibles. Aquí se muestran unas pocas de las infinitas trayectorias de un único electrón que se desplaza desde la fuente de emisión hasta la pantalla fosforescente. Obsérvese que este único electrón atraviesa en realidad ambas rendijas.

El electrón pasa tranquilamente a través de la rendija de la izquierda. Simultáneamente, también pasa tranquilamente a través de la rendija de la derecha. Se dirige hacia la rendija de la izquierda, pero de repente cambia su trayectoria y se dirige a atravesar la de la derecha. Serpentea hacia atrás y hacia delante, pasando finalmente a través de la rendija de la izquierda. Realiza un largo viaje a la galaxia de Andrómeda y luego vuelve para atravesar la rendija de la izquierda, de camino hacia la pantalla. Y sigue así una y otra vez —el electrón, según Feynman, va «olfateando» simultáneamente
todos
los caminos posibles que conectan su punto de partida con su destino final.

Feynman demostró que podía asignar un número a cada uno de estos caminos, de tal modo que su promedio combinado produjera exactamente el mismo resultado que daba la probabilidad calculada utilizando el planteamiento de la función de onda. De este modo, desde el punto de vista de Feynman, no se necesita asociar ninguna onda de probabilidad al electrón. En vez de eso, tenemos que imaginar algo que es igual de extraño, o aún más. La probabilidad de que el electrón —siempre considerado, en todos los aspectos, como una partícula— llegue a cualquier punto dado de la pantalla se obtiene a partir del efecto combinado de todas las trayectorias posibles para llegar allí. Esto se conoce dentro de la mecánica cuántica como el planteamiento de las «trayectorias sumadas» de Feynman.
[29]

Llegados a este punto, nuestra formación clásica se rebela: ¿cómo puede un electrón seguir distintas trayectorias
simultáneamente
y, por añadidura, nada menos que un número infinito de ellas? Esto parece una objeción razonable, pero la mecánica cuántica —la física de nuestro mundo— exige que evitemos estas quejas tan pedestres. Los resultados de los cálculos que se realizan utilizando el planteamiento de Feynman coinciden con los del método de la función de onda, que a su vez coinciden con los resultados experimentales. Hemos de permitir que sea la naturaleza quien diga qué es acertado y qué no lo es. Como Feynman escribió en una ocasión: «[La mecánica cuántica] describe la naturaleza como algo absurdo desde el punto de vista del sentido común. Pero concuerda plenamente con las pruebas experimentales. Por lo tanto, espero que ustedes puedan aceptar a la naturaleza tal como es: absurda».
[30]

Sin embargo, a pesar de lo absurda que pueda ser la naturaleza cuando la examinamos a escalas microscópicas, las cosas deben conjugarse de tal manera que recobremos los sucesos prosaicos y familiares del mundo que percibimos según las escalas habituales. Para lograr esto, Feynman demostró que, si examinamos el movimiento de objetos de gran tamaño —como pelotas de béisbol, aeroplanos o planetas, todos ellos grandes en comparación con las partículas subatómicas— su regla de asignar números a cada trayectoria garantiza que
todas las trayectorias excepto una se anulan la una a la otra
cuando se combinan sus contribuciones. En efecto, sólo una de las infinitas trayectorias importa por lo que respecta al movimiento del objeto. Y esta trayectoria es precisamente la que surge a partir de las leyes del movimiento de Newton. Éste es el motivo por el cual en el mundo cotidiano nos
parece
que los objetos —como en el caso de una pelota lanzada al aire— siguen una sola trayectoria única y predecible desde su origen hasta su destino. Sin embargo, por lo que se refiere a objetos microscópicos, la regla de Feynman de asignar números a las trayectorias muestra que son muchas las distintas trayectorias que pueden intervenir, y a menudo lo hacen, en el movimiento de un objeto. Por ejemplo, en el experimento de la doble rendija, algunas de estas trayectorias atraviesan diferentes rendijas, dando lugar al espectro de interferencias observado. En el ámbito de lo microscópico, por consiguiente, no podemos asegurar que un electrón atraviese sólo una rendija o la otra. El espectro de interferencias y la formulación alternativa de Feynman para la mecánica cuántica atestiguan enfáticamente lo contrario.

Other books

Screaming Yellow by Rachel Green
Albrecht Dürer and me by David Zieroth
False Front by Diane Fanning
Gentleman Captain by J. D. Davies
The Garden Intrigue by Lauren Willig
Twisted by Jake Mactire
Season of Shadows by Yvonne Whittal
A Mew to a Kill by Leighann Dobbs