Read Física de lo imposible Online

Authors: Michio Kaku

Tags: #Divulgación Científica

Física de lo imposible (18 page)

BOOK: Física de lo imposible
8.38Mb size Format: txt, pdf, ePub
ads

Inicialmente, él imagina un fabricante de propósito general, lo bastante pequeño para colocarlo en la mesa, que utilizaría los últimos desarrollos en láseres y microminiaturización con la capacidad para cortar, soldar y dar forma a cualquier objeto que pueda visualizarse en un PC. Por ejemplo, los pobres en un país del Tercer Mundo podrían pedir ciertas herramientas y máquinas que necesitaran en sus granjas. Esta información se introduciría en un PC, que accedería a una enorme biblioteca de planos e información técnica desde internet. Luego, el software del ordenador adecuaría los planos existentes a las necesidades de los individuos, procesaría la información y se la enviaría por correo electrónico. Entonces su fabricante personal utilizaría sus láseres y herramientas de corte en miniatura para construir en una mesa el objeto que ellos desean.

Esta fábrica personal de propósito general es solo el primer paso. Con el tiempo, Gershenfeld quiere llevar su idea al nivel molecular, de modo que una persona podría literalmente fabricar cualquier objeto que pueda ser visualizado por la mente humana. El progreso en esta dirección es lento, no obstante, debido a la dificultad de manipular átomos individuales.

Un pionero que trabaja en esta dirección es Aristides Requicha, de la Universidad del Sur de California. Su especialidad es la «robótica molecular» y su objetivo no es otro que crear una flota de nanorobots que puedan manipular átomos a voluntad. Requicha escribe que hay dos aproximaciones. La primera es la aproximación «de arriba abajo», en la que los ingenieros utilizarían la tecnología de grabado de la industria de semiconductores para crear circuitos minúsculos que pudieran servir como los cerebros de los nanorobots. Con esta tecnología se podrían crear nanorobots cuyos componentes tendrían un tamaño de 30 nm utilizando «nanolitografia», que es un campo en rápido desarrollo.

Pero existe también la aproximación «de abajo arriba», en la que los ingenieros tratarían de crear robots minúsculos de átomo en átomo. La herramienta principal para ello sería el microscopio de exploración (SPM) que utiliza la misma tecnología que el microscopio de efecto túnel para identificar y mover átomos individuales. Por ejemplo, los científicos se han hecho muy habilidosos moviendo átomos de xenón sobre superficies de platino o níquel. Pero, admite, «los mejores grupos del mundo aún tardan unas diez horas en ensamblar una estructura con casi cincuenta átomos». Mover átomos individuales a mano es un trabajo lento y tedioso. Lo que se necesita, afirma, es un nuevo tipo de máquina que pueda realizar funciones de nivel superior, una que pueda mover automáticamente cientos de átomos a la vez de la forma deseada. Por desgracia, semejante máquina no existe aún. No es sorprendente, la aproximación de abajo arriba está aún en su infancia.
[36]

De modo que la psicoquinesia, aunque imposible según los estándares actuales, puede hacerse posible en el futuro a medida que lleguemos a entender más sobre el acceso a nuestros pensamientos mediante el EEG, MRI y otros métodos. Dentro de este siglo sería posible utilizar un aparato dirigido por el pensamiento para manipular superconductores a temperatura ambiente y realizar hazañas que serían indistinguibles de la magia. Y para el próximo siglo sería posible reordenar las moléculas en un objeto macroscópico. Esto hace de la psicoquinesia una imposibilidad de clase I.

La clave para esta tecnología, afirman algunos científicos, es crear nanorobots con inteligencia artificial. Pero antes de que podamos crear minúsculos robots de tamaño molecular, hay una pregunta más elemental: ¿pueden siquiera existir robots?

Capítulo
7
R
OBOTS

Algún día dentro de los próximos treinta años, dejaremos calladamente de ser las cosas más brillantes en la Tierra.

J
AMES
M
C
A
LEAR

Yo, robot
, la película basada en las historias de Isaac Asimov, el sistema robótico más avanzado construido jamás es activado el año 2035. Se llama VIKI (Inteligencia Cinética Interactiva Virtual), y ha sido diseñado para dirigir sin fallos las actividades de una gran metrópoli. Todo, desde el metro y la red eléctrica hasta miles de robots domésticos, está controlado por VIKI. Su mandato central es inquebrantable: servir a la humanidad.

Pero un día VIKI plantea la pregunta clave: ¿cuál es el mayor enemigo de la humanidad? VIKI concluye matemáticamente que el peor enemigo de la humanidad es la propia humanidad. La humanidad tiene que ser salvada de su malsano deseo de contaminar, desencadenar guerras y destruir el planeta. La única forma que encuentra VIKI de cumplir su directiva central es hacerse con el control de la humanidad y crear una dictadura benigna de la máquina. La humanidad tiene que ser esclavizada para protegerla de sí misma.

Yo, robot
plantea estas preguntas: dados los avances astronómicamente rápidos en potencia de computación, ¿llegará un día en que dominen las máquinas? ¿Pueden llegar a ser los robots tan avanzados que se conviertan en la última amenaza para nuestra existencia?

Algunos científicos dicen que no, porque la idea misma de inteligencia artificial es absurda. Hay un coro de críticos que dice que es imposible construir máquinas que puedan pensar. El cerebro humano, argumentan, es el sistema más complicado que la naturaleza ha creado nunca, al menos en esta parte de la galaxia, y cualquier máquina diseñada para reproducir el pensamiento humano está condenada al fracaso. El filósofo John Searle, de la Universidad de California en Berkeley y también el reputado físico Roger Penrose, de Oxford, creen que las máquinas son físicamente incapaces de pensar como un humano.
[37]
Colin McGinn, de la Universidad de Rutgers, dice que la inteligencia artificial «es como babosas tratando de hacer psicoanálisis freudiano. Sencillamente no tienen el equipamiento conceptual».
[38]

Es una pregunta que ha dividido a la comunidad científica durante más de un siglo: ¿pueden pensar las máquinas?

La historia de la inteligencia artificial

La idea de seres mecánicos ha fascinado desde hace tiempo a inventores, ingenieros, matemáticos y soñadores. Desde el Hombre de Hojalata de
El mago de Oz
, a los robots infantiles de
A.I.: Inteligencia Artificial
de Spielberg y los robots asesinos de
Terminator
, la idea de máquinas que actúan y piensan como personas nos ha fascinado.

En la mitología griega, el dios Vulcano forjó doncellas mecánicas de oro y mesas de tres patas que podían moverse por sí mismas. Ya en el 400 a.C. el matemático griego Arquitas de Tarento escribió sobre la posibilidad de hacer un pájaro robot impulsado por vapor.

En el siglo I d.C., Herón de Alejandría (a quien se le atribuye la primera máquina basada en vapor) diseñó autómatas, uno de ellos capaz de hablar, según la leyenda. Hace novecientos años, Nal-Jazari diseñó y construyó máquinas automáticas tales como relojes de agua, aparatos de cocina e instrumentos musicales impulsados por agua.

En 1495, el gran artista y científico del Renacimiento italiano Leonardo da Vinci dibujó bocetos de un caballero robot que podía levantarse, agitar los brazos y mover la cabeza y la mandíbula. Los historiadores creen que este fue el primer diseño realista de una máquina humanoide.

El primer robot tosco pero operativo fue construido en 1738 por Jacques de Vaucanson, que hizo un androide que podía tocar la flauta, y también un pato mecánico.

La palabra «robot» procede de la obra de 1920 R.U.R., del autor checo Karel Capek («robot» significa «trabajo duro» en lengua checa y «trabajo» en eslovaco). En la obra, una fábrica llamada Rossum's Universal Robots crea un ejército de robots para realizar labores domésticas. (A diferencia de las máquinas ordinarias, sin embargo, estos robots están hechos de carne y hueso). Con el tiempo, la economía mundial se hace dependiente de estos robots. Pero los robots son maltratados y finalmente se rebelan contra sus dueños humanos y los matan. En su rabia, sin embargo, los robots matan a todos los científicos que pueden reparar y crear nuevos robots, con lo que se condenan a la extinción. Al final, dos robots especiales descubren que tienen la capacidad de reproducirse y convertirse con ello es unos nuevos Adán y Eva robots.

Los robots eran también el tema de una de las películas mudas más caras que se han filmado,
Metrópolis
, dirigida por Fritz Lang en 1927 en Alemania. La historia transcurre en el año 2026; la clase obrera ha sido condenada a trabajar en angustiosas fábricas subterráneas, mientras que la élite dirigente se divierte en la superficie. Una bella mujer, María, se ha ganado la confianza de los trabajadores, pero la élite dirigente teme que un día pueda conducirles a la revuelta. Por ello se le pide a un científico malvado que haga un robot que sea una copia de María. Finalmente, el plan sale al revés, porque el robot lleva a los trabajadores a la revuelta contra la élite dirigente y provoca el colapso del sistema social.

La inteligencia artificial, o IA, difiere de las tecnologías previas que se han mencionado hasta ahora en que las leyes fundamentales que la sustentan no son aún bien conocidas. Aunque los físicos tienen una buena comprensión de la mecánica newtoniana, la teoría de Maxwell de la luz, la relatividad y la teoría cuántica de átomos y moléculas, las leyes básicas de la inteligencia siguen envueltas en el misterio. Probablemente no ha nacido todavía el Newton de la IA.

Pero eso no desanima a matemáticos y científicos de la computación. Para ellos es solo cuestión de tiempo que una máquina pensante salga del laboratorio.

La persona más influyente en el campo de la IA, un visionario que llegó a poner la piedra angular de la investigación en IA, fue el gran matemático británico Alan Turing.

Fue Turing quien sentó las bases de toda la revolución de la computación. Concibió una máquina (llamada desde entonces máquina de Turing) que constaba solo de tres elementos: una cinta de entrada, una cinta de salida y un procesador central (tal como un chip Pentium), que podía realizar un conjunto de operaciones muy preciso. A partir de esto, fue capaz de codificar las leyes de las máquinas de computación y determinar con precisión su poder y sus limitaciones últimas. Hoy día todos los ordenadores digitales obedecen las rigurosas leyes establecidas por Turing. La arquitectura de todo el mundo digital tiene una gran deuda con él.

Turing también contribuyó a la fundamentación de la lógica matemática. En 1931 el matemático vienes Kurt Gódel conmocionó al mundo de las matemáticas al demostrar que hay enunciados verdaderos en aritmética que nunca pueden ser demostrados dentro de los axiomas de la aritmética. (Por ejemplo, la conjetura de Goldbach de 1742 [que cualquier entero par mayor que dos puede escribirse como la suma de dos números primos] está aún sin demostrar después de más de dos siglos y medio, y quizá sea de hecho indemostrable). La revelación de Gódel hizo añicos el sueño de dos mil años, que se remonta a los griegos, de demostrar todos los enunciados verdaderos en matemáticas. Gódel demostró que siempre habrá enunciados verdaderos en matemáticas que están más allá de nuestro alcance. Las matemáticas, lejos de ser el edificio completo y perfecto soñado por los griegos, se mostraban incompletas.

Turing se sumó a esta revolución demostrando que era imposible saber en general si una máquina de Turing tardaría un tiempo infinito en realizar ciertas operaciones matemáticas. Pero si un ordenador tarda un tiempo infinito en computar algo, significa que lo que se le ha pedido que compute no es computable. Así, Turing demostró que había enunciados verdaderos en matemáticas que no son computables, es decir, están siempre más allá del alcance de los ordenadores, por potentes que sean.

Durante la Segunda Guerra Mundial, el trabajo pionero de Turing en el descifrado de códigos salvó presumiblemente las vidas de miles de soldados aliados e influyó en el resultado de la guerra. Los Aliados eran incapaces de descifrar el código secreto nazi, encriptado por una máquina llamada Enigma, de modo que se pidió a Turing y sus colegas que construyeran una máquina que descifrara ese código. La máquina de Turing se llamaba la «bomba» y finalmente tuvo éxito. Más de doscientas de sus máquinas estaban operativas al final de la guerra. Como resultado, los Aliados pudieron leer las transmisiones secretas de los nazis y así engañarles acerca de la fecha y el lugar de la invasión final de Alemania. Desde entonces, los historiadores han discutido sobre hasta qué punto fue capital el trabajo de Turing en la planificación de la invasión de Normandía, que al final llevó a la derrota de Alemania. (Después de la guerra, el trabajo de Turing fue clasificado como secreto por el Gobierno británico; como resultado, la sociedad desconocía sus contribuciones fundamentales).

En lugar de ser aclamado como un héroe de guerra que ayudó a invertir el curso de la Segunda Guerra Mundial, Turing fue perseguido hasta la muerte. Un día su casa fue asaltada y él llamó a la policía. Por desgracia, la policía encontró pruebas de su homosexualidad y le detuvo. Un tribunal le obligó a inyectarse hormonas sexuales, lo que tuvo un efecto desastroso: se le desarrollaron mamas y fue presa de una gran angustia. Se suicidó en 1954 comiendo una manzana envenenada con cianuro. (Según un rumor, el logo de la Apple Corporation, una manzana con un mordisco, rinde homenaje a Turing).

Hoy día, Turing es probablemente más conocido por su «test de Turing». Cansado de las interminables e infructuosas discusiones filosóficas acerca de si las máquinas pueden «pensar» y de si tienen «alma», trató de introducir rigor y precisión en las discusiones sobre inteligencia artificial ideando un test concreto. Colóquese a un humano y a una máquina en dos cajas selladas, sugirió. Se nos permite dirigir preguntas a las dos cajas. Si somos incapaces de ver la diferencia entre las respuestas del humano y de la máquina, entonces la máquina ha superado el «test de Turing».

Los científicos han elaborado sencillos programas de ordenador, tales como ELIZA, que pueden imitar el habla conversacional y con ello engañar a la mayoría de las personas crédulas haciéndoles creer que están hablando con un humano. (La mayoría de las conversaciones humanas, por ejemplo, utilizan solo algunos centenares de palabras y se concentran en unos pocos temas). Pero hasta ahora no se ha hecho ningún programa de ordenador que pueda engañar a personas que traten de determinar específicamente qué caja contiene al humano y qué caja contiene a la máquina. (El propio Turing conjeturó que, dado el crecimiento exponencial del poder de computación, para el año 2000 podría construirse una máquina que engañara al 30 por ciento de los jueces en un test de cinco minutos).

BOOK: Física de lo imposible
8.38Mb size Format: txt, pdf, ePub
ads

Other books

Ice Shear by M. P. Cooley
Seventy Times Seven by John Gordon Sinclair
Knight Edition by Delilah Devlin
Slide Rule by Nevil Shute
Nightlord: Orb by Garon Whited
Use by CD Reiss