Quantum (29 page)

Read Quantum Online

Authors: Tom Grace

BOOK: Quantum
12.76Mb size Format: txt, pdf, ePub

JANUARY 24

LV Research Station, Antarctica

Collins stood beneath a clear blue sky bathed in the whitest light he had ever known, a light blinding with brilliant intensity. The hard-packed crystals of ice that covered the glacial plateau glowed in dazzling imitation of the sun. Were it not for the yellow-lens goggles protecting his eyes, he would have been snow-blind as soon as he stepped outside the station. From his vantage point, less than seven hundred miles from the South Pole, the sun traced another unbroken ellipse in the sky. Endless day.

Click.

Ansel Adams
could’ve worked some real magic down here
, Collins mused as he adjusted the exposure setting on his camera.

Today, the wind, temperature, and sky conspired to produce one of nature’s rarest and most dazzling sights: parhelic circles. Sunlight, refracted through tiny airborne ice crystals, created the illusion of luminous halos, arcs, and flaring parabolas in the sky. Collins counted twenty distinct formations dancing around the sun.

Click.

Like a surrealist painting, distance was an illusion in the interior of the southernmost continent. It was generally accepted that the otherworldliness of this place was due in equal parts to extremes in temperature, altitude, and lifelessness. Over fifty years of record keeping by Russian crews manning the Vostok Research Station – Collins’s closest neighbors some forty miles to the south – bracketed the local temperature range as between −40 degrees and −128 degrees Fahrenheit.

Satisfied that he’d captured at least one decent image from this spot, Collins moved his camera around to the opposite side of the station. LV Research Station had been home to Collins and his wife, Nedra, since November and had been entirely prefabricated in the U.S. as a mock-up of the habitat for NASA’s manned-mission to Mars. At the center of the station stood a short domed tower. Four cylindrical modules – each the size of a railroad tanker car – stood mounted on thick legs and radiated out from the tower in a cruciform configuration. The modules provided space for research, crew quarters, power and environmental systems, and storage.

Beneath
LV
Station, the sheet of glacial ice that blanketed nearly all of Antarctica rose to a height of 11,500 feet above sea level. Thanks to the katabatic winds – dense sheets of frigid air that flowed down from the nearby ice domes – the rarified air that Collins breathed was even thinner than that of other sites of equal elevation around the world. These winds siphoned low-oxygen air from the upper atmosphere to fill the void left behind as they flowed down toward the coast. When they had first arrived here, it took Collins and his wife several days to acclimate themselves, and both still had to be wary of overexertion.

Collins could attest to the extremes in temperature and altitude, but assumption that this place was totally lifeless was something that he and many other scientists around the world were challenging. Until the latter part of the twentieth century, energy in the form of sunlight was assumed to be essential to the formation of life, but then life was found in the darkest depths of the oceans. When communities of organisms were discovered not merely living but thriving in the superheated mineral-saturated waters of geysers and hydrothermal vents, environments lethal to most other forms of life on earth, scientists were forced to rethink their assumptions about the conditions that might give rise to life. Being more tenacious than anyone had previously considered, life seems to need only three things to start: heat, minerals, and liquid water.

Walking past a row of thirty-inch in diameter metal spheres that contained liquid hydrogen for the station’s fuel cells, Collins approached the reason that NASA and a group of partner companies had financed this project. Fifty feet from the station stood a cobalt blue tetrahedron that was as out of place atop the glacial ice of Antarctica as
Arthur C. Clarke’s monolith on the moon:
the Ice Pick probe.

Collins shortened the legs on his tripod, lowering the camera to capture both the hard lines of the probe’s first stage and the luminous parhelic circles. Satisfied with the composition, he adjusted the exposure setting and snapped another picture.

‘Hey, Philip, how’s the show?’ Nedra asked, her voice clear over his headset.

‘Amazing. You should come out and see it.’

‘I snuck a peek out the window. Just wanted to let you know we’re ready for another dip in the lake.’

Far beneath
LV
Station, sandwiched between a glacier and the rocky surface of Antarctica, lay one of the largest lakes on Earth – a body of liquid water that could have easily been seen from space were it not concealed by the ice. When British and Russian scientists confirmed the existence of Lake Vostok in 1996, they theorized that heat rising from the earth’s interior through rifts in the crust kept the water from freezing. Seismic activity in the area increased the likelihood of hydrothermal vents in Lake Vostok, meaning that the lake had the water, heat, and minerals necessary to support life. What form that life would take, in a place isolated from the rest of the world for the last 20 million years, was the subject of great speculation.

In 1610, Galileo pointed his telescope at Jupiter and discovered four moons orbiting the giant planet. This discovery came at a time when the whole of Western civilization believed that the earth was the center of the universe. News of Lake Vostok’s discovery and the possibility of life in its hidden waters coincided with the arrival at Jupiter of a spacecraft bearing the great astronomer’s name. During a fly-by of one of the moons discovered by Galileo – an ice-covered rock named Europa – the spacecraft transmitted a series of images as astounding to the scientists at NASA’s Jet Propulsion Laboratory as the discovery of the moon itself was to Galileo four hundred years earlier.

Europa was named after the mythical Phoenician princess that Zeus carried off and ravaged. Detailed images from the spacecraft revealed a pattern of fractures on the frozen moon’s surface similar to ice flows in the Arctic Ocean – evidence that beneath Europa’s frozen shell lay an immense body of liquid water larger than all Earth’s oceans. Dark regions mottling the moon’s surface revealed ongoing volcanic and seismic activity, likely the result of Jupiter’s intense gravity wracking Europa’s molten core. With heat, minerals, and liquid water, scientists now saw Europa as the most promising place in our solar system to search for extraterrestrial life.

The complexity of a mission to Europa was unlike anything NASA engineers had encountered since the days of Apollo. Forays to other worlds had thus far only scratched the surface of those celestial bodies. Once on Europa, NASA planned to bore through at least six miles of ice in order to explore a mysterious ocean. A submersible robotic vehicle designed to plumb those hidden waters would not only have to survive a journey in the vacuum of space, but also be able to withstand a crushing pressure that, at a minimum, would equal the deepest place beneath Earth’s oceans.

NASA’s Europa team, led by Collins and his wife, sought out the best minds in robotics, biologic testing, artificial intelligence, and deep-sea remote vehicles to help tackle the technical problems posed by the mission. The Europa Lander not only had to perform numerous complex tasks in an extreme environment but, due to the distances involved, it also had to be capable of making decisions on its own.

Early on, Collins’s team seized on the idea of exploring Lake Vostok as a full-dress rehearsal for the mission to Europa. Exhaustive testing of various subsystems finally led to the construction of a prototype. Ice Pick incorporated all but three of the main systems to be used by the Europa Lander. The deep-space communications unit was deleted from Ice Pick, since the probe’s first stage wouldn’t be more than fifty feet from the people controlling it. While it would have been nice to have the genetic analysis module on board, the scientists at UGene were still tweaking it, and any samples retrieved from the lake would be analyzed in their laboratory afterward. The probe’s nuclear power supply – a radioisotopic thermoelectric generator – was not included, because an international treaty expressly forbade the importation of nuclear material into Antarctica.

The wind shifted and the parhelic circles slowly faded away. Satisfied that he’d captured what he could, Collins picked up his camera and headed back to the station. He followed the thick orange umbilical line that provided power and communications to Ice Pick.

After a quick look around the station, Collins reentered the tower air lock and closed the door. He wasted no time stripping down to his jeans and turtleneck – the station’s interior was over a hundred degrees warmer than outside. Static sparks crackled as he peeled the woolen balaclava from his head; his black hair and beard were matted down by the protective head covering.

‘Water?’ Nedra asked as Collins clambered up the spiral stair to the station’s main level, scratching his chin.

‘Oh, yeah. My mouth is drier than a camel’s ass.’

‘That’s not the image I want in mind the next time you kiss me.’

Nedra filled a tall plastic glass and handed it to him. Keeping hydrated was critical in a place totally devoid of humidity, where the average annual precipitation was less than the Sahara Desert. Collins sat down beside his wife at the long workstation. Nedra’s monitor displayed the same information she hoped to receive one day, several years from now, from a spacecraft on the surface of Europa.

‘Status?’ Collins asked.

‘The sample capsules from the last mission are stowed and a new set of empties are on board the hydrobot. Batteries are at one-hundred percent charge.’

‘Then let’s see if we get lucky today.’

Clinging by actuated crampons to the underside of the glacial ice sheet in the slushy upper boundary of Lake Vostok, the second stage of the Ice Pick probe waited for its next command. It had taken five days in late November for the three-foot in diameter sphere to melt its way straight down through over two miles of glacier. The cryobot liquefied the ice beneath it with the heating panels on its lower hemisphere, and, as it sank, the displaced water refroze above it to prevent contaminants from the surface from entering the hidden lake. A filament of superconducting wire imbedded in a carbon nanotube sleeve emerged from the top of the sphere like a strand of webbing from a spinneret, and ran straight up along the path of the cryobot’s descent from beneath the first stage on the surface.

At Nedra’s command, the circular heating plate at the lower pole of the cryobot receded about a quarter-inch into the sphere, then slid away to expose an iris diaphragm.

‘Equalizing tube pressure,’ Nedra announced.

A series of pressure-relief valves slowly opened to allow a flow of water from the lake to gradually enter the cylindrical chamber behind the diaphragm. Once the air inside the chamber had been evacuated and the water pressure inside made equal with that of the surrounding lake, the valves closed.

‘The tube is flooded and equalized,’ Nedra noted.

Collins switched on the monitor in front of him and gripped the joystick controls. ‘Launch the fish.’

The rings of the iris diaphragm rotated to create an eight-inch aperture at the base of the cylindrical chamber. A blast of compressed air shot the two-foot-long, torpedo-shaped hydrobot through the slush into the dark water below.

Once the hydrobot was safely away, three telescoping masts extended out from the bottom of the cryobot. A pre-programmed series of transmissions verified that communications between Ice Pick’s second and third stage had been established.

‘Hydrobot is in the water,’ Nedra said. ‘She’s all yours.’

The graphical display of gauges and bar graphs on Collins’s monitor became colorfully active as the stream of real-time data began flowing in from the hydrobot.

‘All systems are up and running,’ Collins announced. ‘I’m switching on lights and camera and powering up the propulsion system.’

Halogen lights in the bow of the hydrobot illuminated the crystal-clear water as it slipped downward toward the distant lake bottom. The hydrobot’s descent slowed, then halted as the screw propeller in its tail dug into the frigid water, spinning in reverse to counteract gravity. A trio of maneuvering thrusters clustered around the hydrobot’s center of mass pivoted in response to Collins’s command and slowly rotated it like a baton.

‘Signal strength is good. The hydrobot’s responding to guidance commands,’ Collins said, the image on his screen spinning wildly.

‘Do you have to do that every time we launch?’ Nedra asked, clinching her eyes shut as she rubbed her temples. ‘You know it makes me dizzy.’

Collins brought the hydrobot to a level stop. ‘Plotting course to the next search area.’

The bow of the hydrobot dipped down and Collins piloted the submersible in a gentle sloping descent toward the bottom. Other than a few gently drifting particles, the water in the upper reaches of Lake Vostok was crystal clear – there was no wind, currents, or tide to stir things up. Through the first three hundred feet of its journey downward, the hydrobot recorded only minor temperature fluctuations in frigid water.

‘I think I see something,’ Collins announced as the hydrobot entered the search area. The clear water characteristic of the upper lake was giving way to a gray-black haze. ‘Visibility is dropping.’

Nedra looked over her husband’s shoulder. ‘Where’s the bottom?’

‘Fathometer reads about seventy-five feet of water beneath the fish. This is deeper than the surrounding area. May be a rift in the bottom. The haze looks a lot heavier than before. I think we found a smoker.’ Collins slowed the hydrobot’s descent as it reached the haze. ‘Temperature is rising, pushing into the fifties.’

‘Let’s hold here and take another water sample.’

A clear rigid pipette extended out from the bow of the hydrobot into the water, the submersible’s camera relaying the action to the station above. Inside the hydrobot, a pump drew some water into a sterile sample capsule. After the capsule was filled and sealed, the sampling system purged its lines and withdrew the pipette.

Other books

Lynn Wood - Norman Brides 03 by The Promise Keeper
Trouble in the Tarot by Kari Lee Townsend
Sara, Book 3 by Esther and Jerry Hicks
In the Face of Danger by Joan Lowery Nixon
Almost Lost by Beatrice Sparks
A Soldier's Return by Judy Christenberry
Rock n' Roll All Night by Bailey, J.A.