Read The Clockwork Universe Online
Authors: Edward Dolnick
In his zeal to learn about light, Newton risked permanent darkness.
In the early days of the Royal Society nearly anyone could attend its weekly meetings. Geniuses sat side by side with gentleman amateurs. The Society was less an ivory tower than a place to see and be seen. Giants like Robert Boyle and Christopher Wren presented their newest work, and so did such men as Sir Kenelm Digby, notable mainly for his faith in a potion called “weapon salve.” Digby claimed he had used the salve to cure a man injured in a duel and given up for dead by the king's surgeons. The mysterious ointment included some unlikely ingredientsâ“moss from the skull of an unburied man,” for one
9
âbut the treatment was even odder than the medicine. Weapon salve was applied not to the wound but to the sword that had inflicted it, even if sword and victim were miles apart. (The wound itself was covered with a clean piece of linen and left alone, which in those pre-antibiotic days was probably a good thing.)
Along with stories of miraculous cures, tales of faraway lands were always popular. So was show-and-tell. On one October day in 1660, “the Society received a present of a living chameleon,” after which Wren gave a talk about Saturn's rings. At another meeting in 1660, the Society gravely scrutinized a unicorn's horn and then tested the ancient belief that a spider set down in the middle of a circle made from powdered unicorn's horn would not be able to escape. (The spider, unfazed, “immediately ran out several times repeated.”)
Spiders turned up more often than one might have expected. On a winter afternoon in 1672 Isaac Newton made his first formal presentation to the Society. (Reclusive as always, Newton stayed away while someone else read aloud a paper he had sent.) Newton explained how he had found, using prisms, the true nature of light. White light was not pure but was made up of all the colors of the rainbow. This discovery was one of the milestones in the history of science. Newton's paper followed one on tarantula bites.
The Royal Society quickly accumulated so many strange and wondrous objects that it set up a museum. Visitors ogled such marvels of nature as “a tooth taken out of the womb of a woman, half an inch long,” and “a piece of bone voided with his urine by Sir William Throgmorton.”
Meetings were a hodgepodge because for every genius there was a crank or a charlatan. The surprise, from today's vantage point, is that so often the genius and the crank were the same person. Robert Boyle, for instance, was not merely a brilliant scientist and the most respected member of the Royal Society in its first decades but also the very model of circumspection and respectability. Boyle believed that the best cure for cataracts was to blow powdered, dried human excrement into the patient's eyes.
Ideas like that, and even more outlandish ones, were perfectly respectable. Three hundred years ago the boundary that separates the possible from the impossible was far fuzzier than it is
today. In 1670 the Royal Society thrilled to reports of a new
invention from Europe, a “flying chariot” that moved through the air powered by oars and a sail. Such optimism had its roots in genuine discoveries. Explorers had recently found entire “new” continents. The telescope had revealed astonishing new worlds, and the microscope, which was even newer, had shown that
this
world contained a multitude of unsuspected wonders. The humblest drop of pond water teemed with life.
The Royal Society's response to Kenelm Digby's claims for his magical “weapon salve” shows how much even learned men were prepared to believe. Since reliable men vouched for Digby's remedy, one highly regarded Society member remarked, “I need not be solicitous of the Cause.” The world was so full of marvels, in other words, that the truly scientific approach was to reserve judgment about what was possible and what wasn't, and to observe and experiment instead. Digby's supposed cure strikes modern ears as a relic from an older, superstitious age. His contemporaries drew precisely the opposite moralâtaking Digby's claims seriously displayed not backwardness and credulity but up-to-the-minute open-mindedness.
John Locke, a philosopher of decidedly levelheaded views (and, incidentally, a friend of Isaac Newton), considered it likely that the seas contained mermaids. Learned journals in the second half of the seventeenth century published articles with titles that sound like headlines from an ancient
National Enquirer
. “A Girl in Ireland, who has several Horns growing on her Body,” “Description of an Extraordinary Mushroom,” “Of Four Suns, which very lately appear'd in France.”
Anything was possible.
We think of scientists as chucking out old ideas when something newer and more plausible comes along, but that is not the usual pattern. More often, scientists take up the new but cling to the old as well. In science's early days that was emphatically so. That made for some unlikely pairings. New ideas and old shared space in the same mind, like tattooed teens and hard-of-hearing dotards in uneasy coexistence in the same apartment.
Boyle, for example, held peculiar ideas about dead men and hangings. Eight times a year, on Hanging Days, immense crowds swarmed to London's gallows to see the show. The “Tyburn tree” had room for twenty-four swaying bodies at a time. Hanging Days were holidays, and crowds in dense, jolly packs lined the route from the prison gate to the gallows, like spectators at a parade. “All the Way, from Newgate to Tyburn, is one continued Fair, for Whores and Rogues of the meaner sort,” one observer noted. The condemned man rode past the gawkers in a cart, seated atop his own coffin, his hands in manacles and his neck in a noose.
The throng at Tyburn might number twenty thousand. The rich, perched on wooden bleachers, had the best views. The poor fought for position. The crowd roared its approval for those prisoners who managed a defiant last word or a jaunty wave. A hangman who had been slipped a coin or two might make sure that his victim died quickly, but some condemned men twisted and choked, still half alive, at the end of a dangling rope. It made for extra excitement if the victim's friends flung themselves at his swinging body, frantically tugging his legs downward to try to speed his death.
For nearly everyone the spectacle itself was lure enough. Boyle and other connoisseurs knew better. One of the hangman's perks was the right to auction off souvenirs. Death ropes sold in one-foot lengths. But the hangman's most coveted trophies were an executed prisoner's severed hands, because a hand's “death sweat” held the power to heal. Robert Boyle, a giant of science, recommended this cure for those afflicted with a goiter.
The greatest figures in the pantheon of science gave equal weight to discoveries that we still celebrate and to ideas that strike us as mad. Take René Descartes, the brilliant mathematician and philosopher. He was one of the most important scientists of the generation just before Newton. If science is a cathedral, it was Descartes who set many of its foundation stones in place. Descartes was the ultimate skeptic, so reluctant to take anything for granted that he worried that the world and everything in it might simply be his dream. But he proposed a careful, scientific explanation for the well-known fact that if a person had been murdered and the killer later approached the victim's body, the corpse “identified” its killer by gushing blood.
William Harvey, renowned to this day for explaining how blood circulates in the body, was another who discovered the new while adhering to the old. Harvey was a contemporary of Descartes, which is to say that both men came of age at a time when the belief in witches was at its high point. Everyone knew a great deal about witches. They knew, for instance, that witches rubbed their bodies with “devil's grease,” made from the fat of murdered babies, so that they could slither their way through tiny cracks into their victims' homes. They knew, as well, that witches had animal companions, cats or toads or rats, provided by Satan and magically able to do their mistress's evil bidding. Harvey, a man who straddled two ages, painstakingly dissected one witch's diabolical toad to see if he might find anything supernatural.
Alchemy, which was a scientific quest for a magical-sounding goal, provides perhaps the most striking example of the coexis
tence of old and new. The aim was to find a substance called
the “philosopher's stone,” despite its name a liquid, which held the
power to transform ordinary substances into silver and gold and to convey immortality to anyone who drank it. A devout belief in alchemy was standard in the seventeenth century, but no one exceeded Isaac Newton in persistence. His small, crabbed handwriting fills notebook after notebook with the records of his alchemical experiments. In all Newton lavished some half million words on alchemy, about as many as in
War and Peace
.
He and countless other researchers spent long hours at their flasks and fires mixing potions according to closely guarded recipes. (Leibniz's only fear was that if gold became too readily available its price would fall.) An assistant watched Newton's experiments with reverence but without understanding. “Whatever his aim might be, I was not able to penetrate into, but his Pains, his Diligence at those Times made me think he aimed at something beyond the Reach of human Art & Industry.”
A peek inside Newton's notebooks would have left an observer scarcely more enlightened. He never spoke of anything as crass as growing rich; his focus, it seems, was solely on uncovering nature's secrets. In any case, alchemical formulas were too valuable to state openly. All the language was encodedâ“Saturn” stood for “lead,” for instanceâand the procedures sound like something from an X-rated Hogwarts spell-book. Newton jotted down recipes with such ingredients as “the Green Lion” and “the menstrual blood of the sordid whore.”
The language is so strange, and Newton's scientific reputation is so high, that the temptation is to assume that the odd phrases merely indicate the difficulty of describing new techniques in an antique vocabulary. And it is true that in time al
chemy gave rise to chemistry, and that Newton's approach to
alchemy was methodical and absolutely rigorous. But it would be a mistake to conclude that Newton was a chemist in a sorcerer's hat.
On the contrary, Newton started out by studying chemistry but abandoned it in favor of what he saw as the deeper mysteries of alchemy. This was effectively a return to the past. Chemistry dealt with matter-of-fact questions like what salt is made from. Alchemy sought to explain the invisible forces of living nature. This was sacred, secret research. Throughout his long life Newton hardly breathed a word of what he was up to, and no wonder. “Just as the world was created from dark Chaos . . . ,” he confided in a notebook, “so our work brings forth the beginning out of black chaos.”
Newton's theological and alchemical writings went largely unexamined for two centuries after his death. In 1936, John Maynard Keynes purchased a trove of Newton's notes at auction. He read aghast. Newton was not the first inhabitant of the modern world, Keynes declared, but “the last of the Babylonians and Sumerians, the last great mind which looked out on the visible and intellectual world with the same eyes as those who began to build our intellectual inheritance rather less than ten thousand years ago.”
Scientists tend to have little interest in history, even the history of their own subject. They turn to the past only to pluck out the discoveries and insights that turned out to be fruitfulâBoyle, for instance, is known today for “Boyle's law,” relating pressure and volume in gasesâand they toss the rest aside.
In fields where the notion of progress is indisputable, such disdain for the past is common. The explanation is not so much anti-intellectualism as impatience. Why study ancient errors? So scientists ignore most of their forebears or dismiss them as silly codgers. They make exceptions for a tiny number of geniuses whom they treat as time travelers from the present day,
thinkers just like us who somehow found themselves decked
out in powdered wigs.
But they were
not
like us.
Science today is a grand and formal enterprise, but the modern age of science began as a free-for-all. The idea was to see for yourself rather than to rely on anyone else's authority. The Royal Society's motto was “Nullius in Verba,” Latin for, roughly, “Don't take anyone's word for it,” and early investigators embraced that freedom with something akin to giddiness.
The meetings of the Royal Society in its young days sound like gatherings of a group of very smart, very reckless Cub Scouts. Society members gathered in a large room with a bare table and a roaring fire. In a group portrait, the menâthe company was all maleâwould have looked more or less alike, but that was largely because everyone wore wigs. (In England and France, fashion followed the court. When Charles II began to go gray, and when the Sun King's hairs began to clog the royal hairbrush, the monarchs donned wigs, and soon no gentleman in Europe would venture out in public in his own hair.)
Half a dozen chairs, reserved for important visitors, sat empty on most days, while spectators jostled for space on two wooden benches. Seating was catch as catch can. New arrivals found places “as they think fit, and without any Ceremony,” one French visitor wrote in amazement, “and if any one comes in after the Society is fixed, no Body stirs, but he takes a Place presently where he can find it, so that no Interruption may be given to him that speaks.” Whisperers were hushed indignantly.
The highlights, most weeks, were “demonstrations,” the livelier the better. Hooke and Boyle carried out a long series of experiments to explore “the expansive forces of congelation”âthey put water in a glass tube and froze itâand then everyone settled in to watch the tubes break “with a considerable noise and violence.” Noise was always a great selling point. The members of the Royal Society were forever studying giant hailstones, for instance, in the hope that they would explode with a deafening crack when thrown into the fire. As a bonus, some hailstones had a strange shape or color. In those cases, the scientists' descriptions took on the tone of a “Ripley's Believe It or Not” item about a potato in the shape of a donkey.
Hooke had a particularly admired touch. He had figured out how to pump the air from a bell jar. (Official credit for building the air pump went to Boyle, for several years Hooke's employer.) Now he carried out experiment after experiment while his fellow scientists watched enthralled. “We put in a snake but could not kill it,” one onlooker wrote perplexedly, but a chicken made a better show. “The chick died of convulsions outright, in a short space.” What was the magical substance in ordinary air that living creatures needed in order to keep breathing, and why did some animals need more of it than others?
Soon Hooke and the others moved beyond experiments with birds and mice (and, less dramatically, with burning candles, which also seemed to need to “breathe”). On May 7, 1662, the Society needed something out of the ordinary for a particularly distinguished guest, Prince Rupert of the Rhine, cousin to the king. Out came the much-loved air pump. “We tried several experiments of Mr. Boyle's Vaccuum,” wrote the diarist John Evelyn, who was in attendance. But what to put inside? Another mouse?
Robert Hooke had a better idea. “A man thrusting in his arm”âthis was Hooke himselfâ“upon exhaustion of the air had his flesh immediately swelled, so as the blood was neere breaking the vaines, & unsufferable,” Evelyn noted contentedly. “He drawing it out, we found it all speckled.”
Transfusions made even better theater. On a November afternoon in 1667, forty witnesses crowded into the Society's meeting room to watch a blood transfusion from a sheep to a human. The subject was one Arthur Coga, “who, hearing that the Society were very desirous to try the experiment of transfusion upon a man, and being in want of money, offered himself for a guinea, which was immediately accepted on the part of the Society.”
Coga had studied divinity at Cambridge but had suffered some kind of mental breakdown. That combination of credentials made Coga a perfect subjectâhis word could be trusted, since he was a gentleman, and he was mad, so he was intriguing. The hope was that the blood transfusion would cure him, though no one had any very good reason to think that might happen. While the crowd looked on, a surgeon made an incision into the sheep's leg and another into Coga's arm and then maneuvered a thin, silver pipe into place between them.
For two minutes blood passed from the sheep into Coga's body. Remarkably, Coga survived (although he did not recover his sanity). “After the operation the patient was well and merry,” the surgeon reported, “and drank a glass or two of [wine] and took a pipe of tobacco in the presence of forty or more persons; then went home, and continued well all day.”
* * *
Sheep to man blood transfusion. Wellcome Library, London.
For the spectators who jostled one another for a better view of
Arthur Coga's throbbing arm, every element of the scene before
them was noteworthy. The experiment itself was new and untested, but the Royal Society's whole approach to the pursuit of
knowledge constituted a much vaster, more important experiment.
Experiments were something new. The Society's devotion to this innovative way of probing nature amounted to a call for people to think for themselves. That idea, which seems like the merest common sense to us, struck onlookers at the time as dangerous and obviously misguided.
It's always the case that history is a tale told by the victors. But the triumph of the scientific worldview has been so complete that we've lost more than the losing side's version of history. We've lost the idea that a view different from ours is even possible. Today we take for granted that
originality
is a word of praise.
New
strikes us as nearly synonymous with
improved
. But for nearly all of human history, a new idea was a dangerous idea. When the first history of the Royal Society was written, in 1667, the author felt obliged to rebut the charge that “to be the Author of new things is a crime.” By that standard, he argued, whoever raised the first house or plowed the first field could have been deemed guilty of introducing a novelty.
Most people would have agreed with the Spanish ruler Alfonso the Wise, who had once decreed that the only desirable things in this world were “old wood to burn, old wine to drink, old friends to converse with, and old books to read.” The best way to learn the truth, it was often observed, was to see what the authorities of the past had decreed. This was the plainest common sense. To ignore such wisdom in favor of exploring on one's own was to seek disaster, akin to a foolish traveler's taking it in his head to fling the captain overboard and grab the ship's wheel himself.
Through long centuries the mission of Europe's great universities had been, in the words of the historian Daniel Boorstin, “not to discover the new but to transmit a heritage.” (In the fourteenth century Oxford University had imposed a rule that “Bachelors and Masters of Arts who do not follow Aristotle's philosophy are subject to a fine of 5 shillings for each point of divergence.”) The intellectual traits that we esteem todayâlike independence and skepticismâwere precisely those traits that the Middle Ages feared and scorned.
That deference to authority had religious roots, as did nearly every aspect of medieval life. Good Christians showed their faith partly by their willingness to believe in the unbelievable. In a world riddled with miracles and mysteries, where angels and demons were as real as cats and dogs and where every illness and good harvest showed God's hand, skepticism was only a step from heresy. Who would set limits on the marvels the world contains? No one but an infidel.
So experiments had two linked drawbacks. To insist on making one's own investigations was bad in itself, because it veered on impiety. In addition, looking for oneself meant second-guessing the value of eyewitness testimony. And for longer than anyone could remember, eyewitness testimonyâwhether it had to do with blood raining from the sky or the birth of half human/half animal monstersâhad trumped all other forms of evidence. To accept such testimonials marked a person not as gullible or unsophisticated but as pious and thoughtful. To question such testimonials, on the other hand, the historians Lorraine Daston and Katharine Park remark, was “the hallmark of the narrow-minded and suspicious peasant, trapped in the bubble of his limited experience.”
Augustine had laid out the argument many centuries before. “For God is certainly called Almighty for one reason only,” he had written. That reason was perfectly plain: “He has the power to create so many things which would be reckoned obviously impossible” if not for the eyewitnesses who could swear to their truth.
The believers' task, then, was to defer to authority and refrain from asking questions, literally to “take it on faith.” Augustine railed against the sin of curiosity with a fury and revulsion that, to modern ears, sound almost unhinged. Curiosity was, he wrote, a form of lust as despicable as any lusting of the flesh. The “lust to find out and know” was a perversion born of the same evil impulse that leads some people to peek at mutilated corpses or sneak into sideshows and stare at freaks. God intended that some mysteries remain beyond the bounds of human insight. Did not the Bible warn that “what the Lord keeps secret is no concern of yours; do not busy yourself with matters that are beyond you”?
Augustine's denunciation of curiosity prevailed for a thousand
years. To seek to unravel nature's mysteries was to aspire to see
the world with perfect clarity, and such insight was reserved for God alone. Pride was the great danger. “Knowledge puffeth up,” Corinthians declared, and humankind had a duty to bear that rebuke constantly in mind. When the early scientists finally presumed to challenge that age-old dogma, traditionally minded thinkers sputtered in fury. No testimony was good enough for these maddening newcomers. “If the wisest men in the world tell them that they see it or know it; if the workers of miracles, Christ and his apostles, tell them that they see it; if God himself tells them that He sees it,” one theologian thundered, “yet all this does not satisfy them unless they may see it themselves.”
So the Royal Society's emphasis on experiments was a startling innovation. And experiments had still another feature that made them suspect. Experiments were by definition artificial. How could anyone draw universal, valid conclusions from special, manufactured circumstances? The problem with the new scientists' approach wasn't so much that they insisted on looking at nature rather than at books; the problem was that, not content with looking at the world, they insisted on manipulating it.
Premodern thinkers had studied the natural world closely. Astrologers scrutinized the night sky; botanists and doctors took notes on every plant that grew. But that had been a matter of observing and arranging rather than devising new questions to ask. The investigator's task had always been seen as akin to that of a librarian or a museum curator. For millennia, in one historian's words, an intellectual's “first duty” had been “absorbing, classifying, and preserving the known rather than exploring pastures new.”
The new scientists, a less patient bunch, preferred the creed of their predecessor Francis Bacon, a contemporary of Shakespeare and the first great advocate of experimentation.
10
Nature must be “put to the torture,” Bacon had declared. No doubt the image came quickly to mind in an age that coerced confessions by stretching prisoners on the rack or crushing their fingers in thumbscrews.
For the boisterous men of the Royal Society, spying on nature from behind a curtain was entirely too passive. Experiments had the great advantage that they let you
do
something. Preferably something dangerous. Hooke eventually managed to build a vacuum chamber so large that he could climb inside. Then, while the members of the Royal Society looked on with fascination, he gave the signal to pump the air out. The pump malfunctioned before Hooke could suffocate, but he did manage to render himself dizzy and temporarily deaf.