Introducción a la ciencia I. Ciencias Físicas (84 page)

BOOK: Introducción a la ciencia I. Ciencias Físicas
13.12Mb size Format: txt, pdf, ePub
ads

En 1932, Ernst Ruska y Max Knoll, de Alemania, construyeron un microscopio electrónico rudimentario, pero el primero realmente utilizable se montó, en 1937, en la Universidad de Toronto, y sus diseñadores fueron James Hillier y Albert F. Prebus. Aquel instrumento pudo ampliar 7.000 veces un objeto, mientras que los mejores microscopios ópticos tienen su máximo poder amplificador en la cota 2.000. Allá por 1939, los microscopios electrónicos fueron ya asequibles comercialmente; más tarde, Hillier y otros diseñaron microscopios electrónicos con suficiente potencia para amplificar 2.000.000 de veces un objeto.

Mientras que un microscopio electrónico enfoca a los electrones en el objetivo y los hace pasar a través del mismo, otra clase la constituyó un rayo de electrones que pasaba rápidamente por encima del objetivo, barriéndolo de la misma forma en que lo hace un rayo electrónico en el tubo de imagen de un televisor. Tal
microscopio electrónico de barrido
fue sugerido ya en 1938 por Knoll, pero el primer aparato práctico de esta clase lo construyó el físico britániconorteamericano Albert Víctor Crewe hacia 1970. El microscopio electrónico de barrido daña menos el objetivo observado, muestra el objeto con un mayor efecto tridimensional y se consiguen así más informaciones, e incluso se muestra la posición de los átomos individuales de las variedades mayores.

Electrones y ondas

Nadie se habría sorprendido si ese dualismo partícula-onda funcionara a la inversa, de tal forma que los fenómenos conceptuados ordinariamente como de naturaleza ondulatoria tuvieran asimismo características corpusculares. Planck y Einstein habían mostrado ya que la radiación se componía de cuantos, los cuales, a su manera, son también partículas. En 1923, Compton, el físico que probaría la naturaleza corpuscular de los rayos cósmicos (véase capítulo 7), demostró que esos cuantos poseían algunas cualidades corpusculares comunes. Descubrió que los rayos X, al dispersarse en la materia, perdían energía y adquirían mayor longitud de onda. Eso era justamente lo que cabía esperar de una radiación «corpuscular» que rebotara contra una materia corpuscular; la materia corpuscular recibe un impulso hacia delante y gana energía, y el rayo X, al desviarse, la pierde. El «efecto Compton» contribuyó al establecimiento del dualismo onda-partícula.

Las ondas corpusculares dejaron entrever también importantes consecuencias para la teoría. Por lo pronto esclarecieron algunos enigmas sobre la estructura del átomo.

En 1913, Niels Bohr había descrito el átomo de hidrógeno cual un núcleo central rodeado por un electrón que podía girar en torno suyo siguiendo cualquiera de diversas órbitas. Estas órbitas ocupaban posiciones fijas; cuando un electrón de hidrógeno pasaba de una órbita externa a otra interna, perdía energía, que luego era emitida en forma de un cuanto de longitud de onda fija. Si el electrón se movía de una órbita interna a otra externa, absorbía un cuanto de energía, pero sólo uno de longitud de onda y tamaño específicos, es decir, lo suficiente para hacerle moverse en la medida adecuada. Ésa era la razón de que el hidrógeno pudiera absorber o emitir sólo radiaciones de determinadas longitudes de onda, produciendo raras características en el espectro. El esquema de Bohr, cuya complejidad se acentuó paulatinamente durante la siguiente década, evidenció suma utilidad para explicar muchos hechos sobre el espectro de varios elementos. Esta teoría le valió a Bohr el premio Nobel de Física en 1922. Los físicos alemanes James Franck y Gustav Ludwig Hertz (este último, sobrino de Heinrich Hertz) —cuyos estudios sobre las colisiones entre átomos y electrones dieron unos fundamentos experimentales a las teorías de Bohr— compartieron el premio Nobel de Física en 1925.

Bohr no supo explicar por qué las órbitas ocupaban posiciones fijas. Se limitó a elegir las órbitas que dieran resultados correctos respecto a la absorción y emisión de las longitudes de ondas luminosas sometidas a observación.

En 1926, el físico alemán Erwin Schródinger decidió echar otra ojeada al átomo inspirándose en la teoría de De Broglie sobre la naturaleza ondulatoria de las partículas. Considerando el electrón como una onda, se dijo que éste no giraba alrededor del núcleo como lo hace un planeta alrededor del Sol, sino constituyendo una onda, que se curvaba alrededor del núcleo de tal forma que estaba a un tiempo, por así decirlo, en todas las partes de su órbita. Resultó que, tomando como base la longitud de onda predicha por De Broglie para un electrón, un número entero de ondas electrónicas se ajustaba exactamente a las órbitas delineadas por Bohr. Entre estas órbitas, las ondas no se ajustaron en un número entero, sino que se incorporaron «desfasadas», y tales órbitas carecieron de estabilidad.

Schródinger ideó una descripción matemática del átomo, denominada «mecánica ondulatoria» o «mecánica cuántica», un método bastante más satisfactorio que el sistema de Bohr para contemplar el átomo. Schródinger compartió el premio Nobel de Física en 1933 con Dirac, quien concibiera la teoría de las antipartículas (véase capítulo 7) y contribuyera al desarrollo de ese nuevo panorama del átomo. El físico alemán Max Born, que coadyuvó al desarrollo matemático de la mecánica cuántica, compartió el premio Nobel de Física en 1954 (con Bethe).

El principio de incertidumbre

Por aquellas fechas, el electrón se había convertido en una «partícula» bastante difusa. Y esa ambigüedad habría de empeorar muy pronto. Werner Heisenberg, de Alemania, planteó una profunda cuestión, que casi proyectó las partículas y la propia Física al reino de lo incognoscible.

Heisenberg había presentado su propio modelo de átomo renunciando a todo intento de describir el átomo como un compuesto de partículas y ondas. Pensó que estaba condenado al fracaso cualquier intento de establecer analogías entre la estructura atómica y la estructura del mundo. Prefirió describir los niveles de energía u órbitas de electrones en términos numéricos puros, sin la menor traza de esquemas. Como quiera que usó un artificio matemático denominado «matriz» para manipular sus números, el sistema se denominó «mecánica de matriz».

Heisenberg recibió el premio Nobel de Física en 1932 por sus aportaciones a la mecánica ondulatoria de Schródinger, pues esta última pareció tan útil como las abstracciones de Heisenberg, y siempre es difícil, incluso para un físico, desistir de representar gráficamente las propias ideas.

Hacia 1944, los físicos parecieron dispuestos a seguir el procedimiento más correcto, pues el matemático húngaro-estadounidense John von Neumann expuso una línea argumental que pareció evidenciar la equivalencia matemática entre la mecánica matriz y la mecánica ondulatoria. Todo cuanto demostraba la una, lo podía demostrar igualmente la otra. ¿Por qué no elegir, pues, la versión menos abstracta?

Una vez presentada la mecánica matriz (para dar otro salto atrás en el tiempo) Heisenberg pasó a considerar un segundo problema: cómo describir la posición de la partícula. ¿Cuál es el procedimiento indicado para determinar dónde está una partícula? La respuesta obvia es ésta: observarla. Pues bien, imaginemos un microscopio que pueda hacer visible un electrón. Si lo queremos ver debemos proyectar una luz o alguna especie de radiación apropiada sobre él. Pero un electrón es tan pequeño, que bastaría un solo fotón de luz para hacerle cambiar de posición apenas lo tocara. Y en el preciso instante de medir su posición, alteraríamos ésta.

Éste es un fenómeno bastante frecuente en la vida ordinaria. Cuando medimos la presión de un neumático con un manómetro, dejamos escapar algo de aire y, por tanto, cambiamos la presión ligeramente en el mismo acto de medirla. Asimismo, cuando metemos un termómetro cambia levemente esa temperatura al absorber calor. Un contador de corriente eléctrica roba un poco de corriente para mover la manecilla sobre la esfera. Y así ocurre siempre en cada medida que tomemos.

Sin embargo, el cambio del sujeto es tan ínfimo en todas nuestras mediciones ordinarias, que podemos despreciarlo. Ahora bien, la situación varía mucho cuando intentamos calibrar el electrón. Aquí nuestro artificio medidor es por lo menos tan grande como el objeto que medimos; y no existe ningún agente medidor más pequeño que el electrón. En consecuencia, nuestra medición debe surtir, sin duda, un efecto nada desdeñable, un efecto más bien decisivo en el objeto medido. Podríamos detener el electrón y determinar así su posición en un momento dado. Pero si lo hiciéramos, no sabríamos cuál es su movimiento ni su velocidad. Por otra parte, podríamos gobernar su velocidad, pero entonces no podríamos fijar su posición en un momento dado.

Heisenberg demostró que no nos será posible idear un método para localizar la posición de la partícula subatómica mientras no estemos dispuestos a aceptar la incertidumbre absoluta respecto a su posición exacta. Es un imposible calcular ambos datos con exactitud al mismo tiempo.

Siendo así, no podrá haber una ausencia completa de energía ni en el cero absoluto siquiera. Si la energía alcanzara el punto cero y las partículas quedaran totalmente inmóviles, sólo sería necesario determinar su posición, puesto que la velocidad equivaldría a cero. Por tanto, sería de esperar que subsistiera alguna «energía residual del punto cero», incluso en el cero absoluto, para mantener las partículas en movimiento y también, por así decirlo, nuestra incertidumbre. Esa energía «punto cero» es lo que no se puede eliminar, lo que basta para mantener líquido el helio incluso en el cero absoluto (véase capítulo 6).

En 1930, Einstein demostró que el principio de incertidumbre —donde se afirma la imposibilidad de reducir el error en la posición sin incrementar el error en el momento— implicaba también la imposibilidad de reducir el error en la medición de energía sin acrecentar la incertidumbre del tiempo durante el cual se toma la medida. Él creyó poder utilizar esta tesis como trampolín para refutar el principio de incertidumbre, pero Bohr procedió a demostrar que la refutación tentativa de Einstein era errónea.

A decir verdad, la versión de la incertidumbre, según Einstein, resultó ser muy útil, pues significó que en un proceso subatómico se podía violar durante breves lapsos la ley sobre conservación de energía siempre y cuando se hiciese volver todo al estado de conservación cuando concluyesen esos períodos: cuanto mayor sea la desviación de la conservación, tanto más breves serán los intervalos de tiempo tolerables. Yukawa aprovechó esta noción para elaborar su teoría de los piones (véase capítulo 7). Incluso posibilitó la elucidación de ciertos fenómenos subatómicos presuponiendo que las partículas nacían de la nada como un reto a la conservación de la energía, pero se extinguían antes del tiempo asignado a su detección, por lo cual eran sólo «partículas virtuales». Hacia fines de la década 1940-1950, tres hombres elaboraron la teoría sobre esas partículas virtuales: fueron los físicos norteamericanos Julián Schwinger y Richard Phillips Feynman y el físico japonés Sinitiro Tomonaga. Para recompensar ese trabajo, se les concedió a los tres el premio Nobel de Física en 1965.

A partir de 1976 se han producido especulaciones acerca de que el Universo comenzó con una pequeña pero muy masiva partícula virtual que se expandió con extrema rapidez y que aún sigue existiendo. Según este punto de vista, el Universo se formó de la Nada y podemos preguntarnos acerca de la posibilidad de que haya un número infinito de Universos que se formen (y llegado el momento acaben) en un volumen infinito de Nada.

El «principio de incertidumbre» afectó profundamente al pensamiento de los físicos y los filósofos. Ejerció una influencia directa sobre la cuestión filosófica de «casualidad» (es decir, la relación de causa y efecto). Pero sus implicaciones para la Ciencia no son las que se suponen por lo común. Se lee a menudo que el principio de incertidumbre anula toda certeza acerca de la naturaleza y muestra que, al fin y al cabo, la Ciencia no sabe ni sabrá nunca hacia dónde se dirige, que el conocimiento científico está a merced de los caprichos imprevisibles de un Universo donde el efecto no sigue necesariamente a la causa. Tanto si esta interpretación es válida desde el ángulo visual filosófico como si no, el principio de incertidumbre no ha conmovido la actitud del científico ante la investigación. Si, por ejemplo, no se puede predecir con certeza el comportamiento de las moléculas individuales en un gas, también es cierto que las moléculas suelen acatar ciertas leyes, y su conducta es previsible sobre una base estadística, tal como las compañías aseguradoras calculan con índices de mortalidad fiables, aunque sea imposible predecir cuándo morirá un individuo determinado.

Ciertamente, en muchas observaciones científicas, la incertidumbre es tan insignificante comparada con la escala correspondiente de medidas, que se la puede descartar para todos los propósitos prácticos. Uno puede determinar simultáneamente la posición y el movimiento de una estrella, o un planeta, o una bola de billar, e incluso un grano de arena con exactitud absolutamente satisfactoria.

Respecto a la incertidumbre entre las propias partículas subatómicas, cabe decir que no representa un obstáculo, sino una verdadera ayuda para los físicos. Se la ha empleado para esclarecer hechos sobre la radiactividad, sobre la absorción de partículas subatómicas por los núcleos, así como otros muchos acontecimientos subatómicos, con mucha más racionabilidad de lo que hubiera sido posible sin el principio de incertidumbre.

El principio de incertidumbre significa que el Universo es más complejo de lo que se suponía, pero no irracional.

Capítulo 9

La máquina

Fuego y vapor

Hasta ahora, en este libro, me he preocupado casi por completo de la ciencia
pura
, es decir, una explicación acerca del Universo que nos rodea. Sin embargo, a través de la Historia los seres humanos han empleado las obras del Universo para aumentar su propia seguridad, comodidad y placer. Emplearon todas esas obras en un principio sin una comprensión adecuada de las mismas pero, gradualmente, llegó a dominarlas con ayuda de cuidadosas observaciones, sentido común e incluso éxitos y fracasos. Una aplicación semejante de las obras para usos humanos es la
tecnología
, y la misma podemos decir que es anterior a la ciencia.

No obstante, una vez la ciencia comenzó a crecer se hizo posible lograr que la tecnología avanzase a una velocidad cada vez más creciente. En los tiempos modernos, la ciencia y la tecnología han crecido tan entrelazadas (la ciencia haciendo avanzar a la tecnología mientras elucidaba las leyes de la Naturaleza, y la tecnología hace adelantar a la ciencia al producir nuevos instrumentos y mecanismos para que los empleen los científicos), que ya no nos es posible separarlas.

BOOK: Introducción a la ciencia I. Ciencias Físicas
13.12Mb size Format: txt, pdf, ePub
ads

Other books

Hell Bent by Devon Monk
Baby Steps by Elisabeth Rohm
The Human Factor by Graham Greene
3 Thank God it's Monday by Robert Michael
Escape by Paul Dowswell
Over the Farmer's Gate by Roger Evans
Fallen Angel by Kevin Lewis
Improperly Wed by Anna DePalo