Read Miles de Millones Online

Authors: Carl Sagan

Tags: #divulgación científica

Miles de Millones (7 page)

BOOK: Miles de Millones
6.77Mb size Format: txt, pdf, ePub
ads

¿Es posible que los seres de algún otro planeta tengan una sensibilidad visual máxima a frecuencias muy distintas? No me parece probable. Casi todos los gases que abundan en el cosmos tienden a ser transparentes a la luz visible y opacos a las frecuencias próximas. Todas las estrellas, a excepción de las más frías, concentran gran cantidad de su energía en las frecuencias visibles, si no la mayor parte de ellas. El hecho de que tanto la transparencia de la materia como la luminosidad de las estrellas opten por la misma gama reducida de frecuencias parece ser sólo una coincidencia que se deriva de las leyes fundamentales de la radiación, la mecánica cuántica y la física nuclear, y que se puede aplicar, por lo tanto, no sólo a nuestro sistema solar, sino a todo el universo.

Tal vez existan excepciones ocasionales, pero creo que los seres de otros mundos, si los hay, probablemente verán en la misma banda de frecuencias que nosotros
[5]
.

Si a nuestros ojos la vegetación es verde, se debe a que refleja la luz de este color y absorbe la roja y la azul. Podremos trazar un esquema del grado de reflexión de la luz según sus diferentes colores. Algo que absorba la luz azul y refleje la roja se verá rojo; algo que absorba la luz roja y refleje la azul se verá azul. Vemos blanco un objeto cuando refleja todos los colores más o menos por igual. Esto vale también para los materiales grises y negros. La diferencia entre blanco y negro no es cuestión de color, sino de la cantidad de luz reflejada, de modo, pues, que no se trata de términos absolutos, sino relativos.

El material natural más brillante puede que sea la nieve recién caída. Sin embargo, sólo refleja el 75 % de la luz incidente. Los materiales más oscuros que podemos encontrar en la vida diaria —como el terciopelo negro— aún reflejan un pequeño porcentaje de la luz que incide sobre ellos. «Tan diferente como el negro y el blanco» es un dicho que contiene un error conceptual. Blanco y negro son fundamentalmente la misma cosa, la diferencia sólo estriba en la cantidad relativa de luz reflejada, no en su color.

Entre los seres humanos, la mayoría de «blancos» lo son bastante menos que la nieve recién caída (o incluso que un frigorífico de ese color), y la mayor parte de «negros» lo son menos que el terciopelo negro. Se trata de términos relativos, vagos, confusos.

La fracción de la luz incidente que refleja la piel humana (reflectancia) varía de modo considerable de un individuo a otro. La pigmentación de la piel se debe principalmente a una molécula orgánica llamada melanina, que el cuerpo elabora a partir de la tirosina, un aminoácido corriente en las proteínas. Los albinos padecen una anomalía hereditaria que impide la síntesis de melanina. Su piel y su pelo son de un blanco lechoso. El iris de sus ojos es rosado. Los animales albinos son raros en la naturaleza porque, por un lado, su piel proporciona escasa defensa contra la radiación solar y, por otro, carecen de camuflaje protector. Los albinos no suelen vivir mucho tiempo.

En Estados Unidos, casi todo el mundo es moreno. Nuestras pieles reflejan algo más la luz del extremo rojo del espectro visible que la del extremo azul. Es tan absurdo describir como «de color» a los individuos con un contenido elevado de melanina como calificar de «pálidos» a quienes lo tienen bajo.

Las diferencias significativas en la reflectancia de la piel sólo se manifiestan en la banda visible y en frecuencias inmediatamente adyacentes. Los descendientes de europeos nórdicos y aquellos cuyos antepasados procedían del África central son igual de negros en el ultravioleta y en el infrarrojo, donde casi todas las moléculas orgánicas, y no sólo la melanina, absorben la luz. Únicamente en la banda visible, donde muchas moléculas son transparentes, es posible la anomalía de la piel blanca. En la mayor parte del espectro todos los seres humanos somos negros
[6]
.

La luz solar se compone de una mezcla de ondas con frecuencias correspondientes a todos los colores del arco iris. Hay algo más de amarillo que de rojo o azul, lo que explica en parte el tono amarillo del Sol.

Todos estos colores inciden, por ejemplo, en el pétalo de una rosa. ¿Por qué entonces la rosa se ve roja? Porque todos los colores aparte del rojo son sustancialmente absorbidos por el pétalo. La mezcla de ondas luminosas incide sobre la rosa. Las ondas rebotan una y otra vez bajo la superficie del pétalo y, como sucedía en la bañera, tras cada rebote se amortiguan, pero en cada reflexión las ondas azules y amarillas son absorbidas más que las rojas.

El resultado neto es que se refleja más luz roja que de cualquier otro color, y es por esto por lo que percibimos la belleza de una rosa roja. Sucede lo mismo con las flores azules o violetas, sólo que en este caso son la luz roja y la amarilla las absorbidas con preferencia, en tanto que la azul y la violeta se reflejan.

Existe un pigmento orgánico responsable de la absorción de luz en flores tales como las rosas y las violetas, de colores tan característicos que han adoptado sus nombres. Se denomina antocianina. Curiosamente, una antocianina típica se torna roja en un medio ácido, azul en un medio alcalino y violeta en un medio neutro. Así, las rosas son rojas porque contienen antocianina y su medio interno es un tanto ácido, mientas que las violetas son azules porque contienen antocianina en un medio interno alcalino.

Los pigmentos azules son poco frecuentes en la naturaleza, tal como lo demuestra la rareza de las rocas o arenas azules en la Tierra y en los otros planetas. Los pigmentos azules son bastante complejos; las antocianinas están compuestas de unos veinte átomos, cada uno más pesado que el hidrógeno, dispuestos en una estructura específica.

Los seres vivos utilizan los colores de muchas maneras: para absorber la luz solar y, a través de la fotosíntesis, producir alimento sólo a partir de aire y agua; para recordar a las aves que crían dónde están los gaznates de sus polluelos, para interesar a una pareja; para atraer a un insecto polinizador; para camuflarse y pasar inadvertidos, y, al menos entre los seres humanos, para deleitarse con su belleza. Pero todo esto sólo es posible gracias a la física de las estrellas, la química del aire y la soberbia maquinaria del proceso evolutivo, que nos ha conducido a una armonía tan espléndida con nuestro entorno físico.

Cuando estudiamos otros mundos, cuando examinamos la composición química de sus atmósferas o superficies —cuando intentamos comprender por qué es parda la bruma alta de Titán, una luna de Saturno, o rosado el terreno agrietado de Tritón, una luna de Neptuno— nos basamos en propiedades de las ondas luminosas, no muy diferentes de las del agua en la bañera. Dado que todos los colores que vemos —en la Tierra y en cualquier otra parte— sólo existen en función de aquellas longitudes de onda que se reflejan mejor, imaginar el Sol acariciando todo cuanto tiene a su alcance, concebir su luz como la mirada de Dios, es algo más que una idea poética. Pero quien quiera comprender mejor lo que sucede hará bien en pensar en un grifo que gotea.

Capítulo
5
C
UATRO PREGUNTAS CÓSMICAS

Cuando en lo alto aún no habían recibido nombre los cielos, ni mención tenía el firme suelo de abajo [...]. Ni estaba cubierta de cañizo una choza, ni existían marjales, cuando aún no había divinidad alguna que tuviera un nombre y cuyo destino se hallara determinado, entonces surgieron los dioses...

Enuma Elish
, Mito babilónico de la creación
(finales del tercer milenio a. de C.)
[7]

C
ADA CULTURA TIENE SU MITO DE LA CREACIÓN
, a través del cual se intenta comprender de dónde procede el universo y todo lo que contiene. Estos mitos pocas veces son algo más que cuentos concebidos por fabulistas. En nuestra época contamos también con un mito de la creación. Ahora bien, éste está basado en pruebas científicas, y reza más o menos así...

Vivimos en un universo en expansión, cuya vastedad y antigüedad están más allá de la comprensión humana ordinaria. Las galaxias que alberga se alejan precipitadamente unas de otras; son remanentes de una inmensa explosión, el Big Bang. Algunos científicos piensan que nuestro universo puede ser uno entre un vasto número —quizás infinito— de universos mutuamente aislados. Puede que unos crezcan y se colapsen, nazcan y mueran, en un instante. Otros quizá se expandan eternamente. Algunos podrían estar equilibrados de manera sutil y sufrir un gran número —tal vez infinito— de expansiones y contracciones. Nuestro propio universo o al menos su presente encarnación, se encuentra a unos 15.000 millones de años de su origen, el Big Bang.

Es posible que en esos otros universos las leyes de la naturaleza sean diferentes y la materia adopte otras formas. En muchos de ellos, carentes de soles y de planetas e incluso de elementos químicos de complejidad superior a la del hidrógeno y el helio, sería imposible la vida. Otros podrían tener una complejidad, una diversidad y una riqueza superiores a las del nuestro. Si existen otros universos, tal vez nunca podamos desentrañar sus secretos y mucho menos visitarlos. Pero en el nuestro disponemos de materia suficiente en la que ocuparnos. Nuestro universo contiene unos 100.000 millones de galaxias, una de las cuales es la Vía Láctea.
«Nuestra
Galaxia», solemos decir, aunque desde luego no somos sus dueños. Está compuesta de gases, polvo y unos 400.000 millones de soles. Uno de éstos, situado en un oscuro brazo espiral, es el Sol, la estrella local (hasta donde sabemos, anodina, vulgar, corriente). En su viaje de 250 millones de años en torno al centro de la Vía Láctea, acompaña al Sol todo un séquito de pequeños mundos. Algunos son planetas, otros, satélites, asteroides o cometas. Los seres humanos somos una de las 50.000 millones de especies que han prosperado y evolucionado en un pequeño planeta, el tercero a partir del Sol, al que llamamos Tierra. Hemos enviado naves para reconocer otros 70 mundos de nuestro sistema, y para penetrar en la atmósfera o posarse en la superficie de cuatro: la Luna, Venus, Marte y Júpiter. Estamos comprometidos en un empeño mítico.

La profecía es un arte perdido. A pesar de nuestro «ansioso deseo de horadar la espesa oscuridad del futuro», para utilizar palabras de Charles McKay, no demostramos ser muy duchos en la materia. En ciencia, los descubrimientos más importantes son a menudo los más inesperados, y no una simple extrapolación de lo que ya sabemos. La razón es que la naturaleza es, de lejos, mucho más ingeniosa, sutil y brillante que los seres humanos. No deja de ser estúpido, pues, tratar de prever cuáles puedan ser los hallazgos más significativos en astronomía en las próximas décadas, el bosquejo futuro de nuestro mito de la creación. Por otro lado, sin embargo, existen tendencias discernibles en el desarrollo de la instrumentación que sugieren al menos una perspectiva de descubrimientos pasmosos.

La elección por parte de cualquier astrónomo de los cuatro problemas más interesantes sería idiosincrásica y conozco a muchos que se inclinarían por opciones diferentes de las mías.

Entre otros candidatos figuran la materia oculta que constituye el 90 % del universo (todavía no sabemos qué es), la identificación del agujero negro más próximo, la extraña conjetura de que las distancias entre galaxias están cuantizadas (es decir, que se encuentran a ciertas distancias y sus múltiplos, pero no a distancias intermedias), la naturaleza de las explosiones de rayos gamma (donde episódicamente estallan los equivalentes de sistemas solares enteros), la aparente paradoja de que la edad del universo pueda ser inferior a la de las estrellas más viejas (probablemente resuelta por la reciente conclusión, a partir de datos del telescopio espacial Hubble, de que el universo tiene 15.000 millones de años), la investigación en laboratorios terrestres de muestras cometarias, la búsqueda de aminoácidos interestelares y la naturaleza de las primeras galaxias.

A no ser que se produzcan grandes reducciones en los fondos destinados en todo el mundo a la astronomía y la exploración espacial —funesta posibilidad en modo alguno impensable— he aquí cuatro cuestiones extraordinariamente prometedoras
[8]
:

1. ¿Existió vida en Marte?
El planeta Marte es hoy un desierto helado y muerto. Pero en toda su superficie se conservan antiguos valles de origen claramente fluvial. Hay también indicios de antiguos lagos y quizás hasta océanos. Basándose en la abundancia de cráteres, cabe hacer una estimación aproximada del tiempo transcurrido desde que Marte dejó de ser cálido y húmedo. (El método ha sido calibrado a partir de los cráteres de la Luna y la datación radiactiva de las vidas medias de elementos presentes en muestras lunares traídas por los astronautas del proyecto
Apolo.)
La respuesta es 4.000 millones de años. Pero ésa es precisamente la época en que surgió la vida en la Tierra. ¿Es posible que hubiera dos planetas cercanos y de ambientes muy semejantes, pero que la vida sólo surgiera en uno de ellos? ¿O quizás evolucionó la vida también en Marte, sólo para extinguirse cuando el clima cambió de manera misteriosa? ¿O bien siguen existiendo oasis o refugios, quizá bajo la superficie, en los que persiste alguna forma de vida marciana? Marte nos plantea dos enigmas fundamentales: la posible existencia de vida pasada o presente, y la razón de que un planeta similar a la Tierra haya quedado aprisionado en una glaciación permanente. Esta última cuestión podría tener un interés práctico para el ser humano, una especie que se dedica afanosamente a explotar su propio entorno con un conocimiento muy pobre de las consecuencias de sus acciones.

BOOK: Miles de Millones
6.77Mb size Format: txt, pdf, ePub
ads

Other books

The Glass Palace by Amitav Ghosh
The Spanish Civil War by Hugh Thomas
Cowboy Outcasts by Stacey Espino
Shadow Man: A Novel by Jeffrey Fleishman
Not Becoming My Mother by Ruth Reichl
Cold Blood by Alex Shaw
Back to Bologna by Michael Dibdin
D'Mok Revival 1: Awakening by Michael J. Zummo
Castle Death by Joe Dever