Un punto azul palido (41 page)

Read Un punto azul palido Online

Authors: Carl Sagan

Tags: #Divulgación Científica

BOOK: Un punto azul palido
7.34Mb size Format: txt, pdf, ePub

La respuesta de Albert Einstein a la pregunta de por qué vemos solamente la materia y no la antimateria fue: «Porque venció la materia»; con ello quería decir que, al menos en nuestro sector del universo, después de que casi toda la materia y la antimateria entraran en interacción y se aniquilaran mutuamente mucho tiempo atrás, sobró algo de lo que llamamos materia normal.

De haber sido al revés, los seres humanos, y todo lo demás en esta parte del universo, estaríamos hechos de antimateria. Nosotros, claro está, lo llamaríamos materia, y la idea de que los mundos y la vida están hechos de esa otra clase de material, esa materia con las cargas eléctricas invertidas, la consideraríamos sin duda alocadamente especulativa.

Por lo que hoy sabemos, gracias a la astronomía de rayos gamma y otros métodos, el universo está compuesto, casi en su totalidad, de materia. La razón que lo explica va ligada a cuestiones cosmológicas profundas, en las que ahora no vamos a entrar. Pero solamente con que hubiera habido al principio una diferencia de una-partícula-sobre-un-billón en la preponderancia de la materia sobre la antimateria, incluso esa insignificante diferencia habría bastado para explicar el universo que vemos hoy.

Williamson imaginó que los humanos del siglo XXII podrían mover asteroides a su voluntad mediante la aniquilación mutua controlada de materia y antimateria. Los rayos gamma resultantes, alineados, rebasarían con mucho la potencia de un cohete. La antimateria estaría disponible en el cinturón principal de asteroides (entre las órbitas de Marte y Júpiter), pues era ésa su explicación para la
existencia
de dicho cinturón. En el pasado remoto, propuso Williamson, un antimundo intruso de antimateria llegó al sistema solar procedente de las profundidades del espacio, y colisionó con lo que entonces era un planeta similar a la Tierra, el quinto desde el Sol, aniquilándolo. Los fragmentos de ese poderoso impacto son los asteroides, y algunos de ellos todavía están compuestos de antimateria. Aprovechando uno de esos asteroides de antimateria —aunque reconoció que ello podía ser bastante delicado— pueden moverse mundos a placer.

En su época, las ideas de Williamson eran futuristas, pero estaban muy lejos de ser descabelladas. Algunas partes de
Collision Orbit
pueden considerarse auténticamente visionarias. Hoy, sin embargo, tenemos buenas razones para pensar que en el sistema solar no existen cantidades significativas de antimateria, y que el cinturón de asteroides, lejos de ser un planeta terrestre fragmentado, es un enorme conjunto de pequeños corpúsculos a los que las mareas gravitatorias de Júpiter impiden formar un mundo similar a la Tierra.

No obstante, actualmente generamos (muy) pequeñas cantidades de antimateria en aceleradores nucleares y, hacia el siglo XXII, probablemente seremos capaces de fabricar cantidades mucho mayores. Como es tan eficaz —convierte toda la materia en energía, E =
mc
2
,
con un ciento por ciento de eficacia—, quizá para entonces los motores de antimateria serán ya una tecnología práctica, reivindicando a Williamson.

A falta de eso, ¿qué fuentes de energía se puede esperar de forma realista que estén disponibles para remodelar asteroides, iluminarlos, calentarlos y moverlos de un lugar a otro?

El Sol brilla a base de apiñar protones y convertirlos en núcleos de helio. En el proceso se libera energía, si bien con una eficacia inferior al 1 por ciento de la que consigue la aniquilación entre materia y antimateria. Pero incluso las reacciones protón-protón se hallan mucho más allá de lo que sería realista imaginar para nosotros en un futuro próximo. Las temperaturas requeridas son, con mucho, demasiado elevadas. Sin embargo, en lugar de apiñar protones, podríamos emplear tipos de hidrógeno más pesados. Ya lo estamos haciendo en las armas termonucleares. El deuterio es un protón fijado por fuerzas nucleares a un neutrón; el tritio es un protón fijado por fuerzas nucleares a dos neutrones. Parece probable que dentro de un siglo contemos con proyectos energéticos prácticos que impliquen la fusión controlada del deuterio y del tritio, y del deuterio y el helio. El deuterio y el tritio se hallan presentes como constituyentes menores en el agua (en la Tierra y en otros mundos). El tipo de helio necesario para la fusión,
3
He (dos protones y un neutrón conforman su núcleo), se ha ido implantando a lo largo de miles de millones de años sobre la superficie de los asteroides a cargo del viento solar. Estos procesos no son ni de lejos tan eficientes como las reacciones protón-protón en el Sol, pero podrían proporcionar suficiente energía para abastecer a una ciudad pequeña durante un año, mediante un filón de hielo de sólo unos pocos metros de tamaño.

Los reactores de fusión parecen estar progresando con excesiva lentitud como para poder jugar un papel importante en la solución, o al menos en una atenuación significativa, del calentamiento global. Pero hacia el siglo XXII podrían estar ampliamente disponibles. Mediante motores de cohete por fusión será posible mover asteroides y cometas por el sistema solar interior, tomando un asteroide del cinturón principal, por ejemplo, e insertándolo en órbita alrededor de la Tierra. Un mundo de diez kilómetros de diámetro podría ser transportado, pongamos, desde Saturno hasta Marte mediante la combustión nuclear del hidrógeno contenido en un cometa helado de un kilómetro de diámetro. (Una vez más, doy por sentado un periodo de estabilidad política y seguridad mucho mayores.)

D
EJEMOS DE LADO POR UN MOMENTO
cualquier escrúpulo relacionado con cuestiones éticas que podamos albergar con respecto a la remodelación de mundos o a nuestra habilidad para hacerlo sin consecuencias catastróficas. Excavar los interiores de corpúsculos celestes, reconfigurarlos a fin de hacerlos habitables y moverlos de un lugar a otro por el sistema solar parece que puede estar a nuestro alcance dentro de un siglo o dos. Quizá para entonces contemos también con las garantías internacionales adecuadas. Pero ¿qué hay de la transformación de los entornos ambientales no de asteroides y cometas, sino de planetas? ¿Podríamos vivir en Marte?

Si quisiéramos hacer Marte habitable, es fácil llegar a la conclusión de que, al menos en principio, podríamos hacerlo: el planeta disfruta de abundante luz solar. Además posee también agua en cantidad en las rocas y en el subsuelo, así como hielo polar. Su atmósfera se compone principalmente de anhídrido carbónico. Por otra parte, la cercana Fobos cuenta con gran cantidad de materia orgánica, que podría ser extraída y suministrada a Marte. (De hecho, la superficie de Fobos ya está acanalada, como si alguien hubiera estado allí antes que nosotros, pero los geólogos planetarios piensan que las fuerzas de las mareas gravitatorias o la craterización por impacto pueden haber generado esos surcos.) Parece plausible que, en hábitats independientes —tal vez en habitáculos en forma de cúpula—, fuéramos capaces de producir cultivos, manufacturar oxígeno a partir del agua, así como de reciclar desperdicios.

Al principio dependeríamos de los suministros terrestres, pero con el tiempo los iríamos fabricando por nuestra cuenta y así, progresivamente, seríamos cada vez más autosuficientes. Los habitáculos en forma de cúpula dejarían pasar la luz solar, pero mantendrían a raya la luz ultravioleta aunque estuvieran hechos de cristal normal. Provistos de máscaras de oxígeno y trajes protectores —si bien nada tan incómodo y voluminoso como los trajes espaciales— podríamos salir de nuestros enclaves para ir de exploración o bien para construir otras ciudades y granjas bajo cúpulas.

Todo ello parece muy evocativo de la experiencia colonizadora americana, pero con al menos una diferencia importante: en sus primeras fases son esenciales grandes subvenciones. La tecnología necesaria para llevarlo a cabo es demasiado cara para que una familia modesta, como mis abuelos hace un siglo, pueda pagarse el pasaje a Marte. Los primeros pioneros marcianos serán enviados por los gobiernos y deberán demostrar aptitudes altamente especializadas. No obstante, dentro de una o dos generaciones, cuando hijos y nietos nazcan allí —especialmente cuando esté a nuestro alcance la autosuficiencia— las cosas empezarán a cambiar. Los jóvenes nacidos en Marte recibirán una educación especial en relación con la tecnología esencial para la supervivencia en este nuevo entorno. Los colonizadores serán cada vez menos heroicos y menos excepcionales. Poco a poco se irá imponiendo toda la gama de cualidades y defectos de la especie humana. Gradualmente, en parte debido a la dificultad de trasladarse de la Tierra a Marte, irá emergiendo una cultura marciana diferenciada, con aspiraciones y temores distintos ligados al entorno, tecnologías distintas, problemas sociales distintos y soluciones diferentes y, tal como ha ocurrido en todas las circunstancias similares a lo largo de la historia humana, se irá imponiendo también una gradual sensación de alejamiento cultural y político con respecto al planeta madre.

Grandes naves de transporte de tecnología esencial llegarán desde la Tierra, así como nuevas familias de colonizadores y algunos recursos. Resulta difícil saber, sobre la base de nuestro limitado conocimiento de Marte, si esas naves volverán a casa de vacío o si se llevarán consigo algo que solamente puede encontrarse en Marte, algo considerado muy valioso en la Tierra. Inicialmente gran parte de la investigación científica de las muestras de la superficie marciana se realizará en nuestro planeta. Pero, con el tiempo, el estudio científico de Marte (y de sus lunas Fobos y Deimos) se efectuará in situ.

Finalmente, tal como ha ocurrido con virtualmente cualquier otro tipo de medio de transporte humano, el viaje interplanetario acabará siendo accesible a la gente corriente: podrán llevarlo a cabo científicos con sus propios proyectos de investigación, colonizadores hartos de la Tierra y también turistas aventureros. Y, naturalmente, habrá exploradores.

Si llegara alguna vez el día en que fuera posible transformar el entorno ambiental de Marte en un medio ambiente similar al de la Tierra —de tal modo que se pudiera prescindir de trajes protectores, máscaras de oxígeno y granjas y ciudades bajo cúpulas—, la atracción y accesibilidad de Marte se verían incrementadas de forma significativa. Lógicamente, lo mismo sucedería con cualquier otro mundo que pudiera ser transformado para que los humanos lo habitaran sin tener que usar complicados dispositivos, pensados para evitar un entorno planetario hostil. Nos sentiríamos mucho más cómodos en nuestro nuevo hogar si lo que nos separara de la muerte no fuera algo tan insignificante como una cúpula aislante o un traje espacial. (Aunque tal vez estoy exagerando el grado de preocupación que nos causaría tal circunstancia. De hecho, los habitantes de los Países Bajos parecen al menos tan adaptados y despreocupados como los demás habitantes de la Europa del norte; y eso que sus diques constituyen la única barrera que hay entre ellos y el mar.)

Admitiendo de antemano la naturaleza especulativa de la pregunta, así como las limitaciones de nuestros conocimientos, ¿tiene sentido imaginar la terraformación de los planetas?

No hace falta mirar más allá de nuestro propio mundo para darnos cuenta de que los seres humanos somos hoy capaces de alterar profundamente los entornos medioambientales de un planeta. La reducción de la capa de ozono, el calentamiento global derivado de un creciente efecto invernadero y el enfriamiento global resultante de una hipotética guerra nuclear son maneras en que la tecnología actual es capaz de trastrocar de forma significativa el entorno de nuestro mundo y, en todos los casos, se trata de una consecuencia inadvertida de llevar a cabo otra actividad. Si nos hubiéramos propuesto modificar nuestro entorno planetario, seríamos plenamente capaces de generar una alteración todavía mayor. A medida que nuestra tecnología vaya haciéndose más poderosa podremos poner en marcha cambios mucho más profundos.

No obstante, igual que en un aparcamiento en paralelo resulta más sencillo salir de nuestra plaza que entrar en ella, es más fácil destruir el entorno medioambiental de un planeta que reconducirlo hacia una serie de temperaturas, presiones, composiciones, etcétera, estrictamente prescritas. Conocemos ya una multitud de mundos desolados e inhóspitos y —con estrechos márgenes— solamente sabemos de uno verde y acogedor. Esta es una de las primeras y principales conclusiones de la era de exploración espacial del sistema solar. Al alterar la Tierra, o cualquier mundo que posea atmósfera, debemos tener muchísimo cuidado con las retroacciones positivas, por las que incidimos levemente sobre un entorno medioambiental y éste se dispara por su cuenta, un poco de enfriamiento que conduce a una glaciación incontrolable, como pudo ocurrir en Marte, o un poco de calentamiento que desencadena un desbocado efecto invernadero, como pudo ser el caso de Venus. No está claro en absoluto que nuestros conocimientos sean suficientes para llevar a cabo una empresa de tanta envergadura.

Por cuanto yo sé, la primera sugerencia en la literatura científica referente a la terraformación de planetas apareció en un artículo de 1961 que escribí sobre Venus. Yo estaba bastante seguro de que la superficie de Venus se encuentra a una temperatura que rebasa con creces el punto normal de ebullición del agua, y ello a consecuencia de un efecto invernadero por anhídrido carbónico/vapor de agua. Imaginé la posibilidad de sembrar sus nubes altas con microorganismos producidos genéticamente, que se encargarían de absorber CO
2
, N
2
y H
2
O de la atmósfera y convertirlos en moléculas orgánicas. Cuanto más CO
2
extrajeran, menor sería el efecto invernadero y más fría la superficie. Los microbios serían transportados por la atmósfera hasta la superficie donde quedarían fritos, de tal modo que el vapor de agua pudiera regresar a la atmósfera; pero el carbono del CO
2
sería irreversiblemente convertido en grafito o alguna otra forma no volátil del carbono a causa de las elevadas temperaturas. A la larga, las temperaturas caerían por debajo del punto de ebullición y la superficie de Venus se haría habitable, y aparecería salpicada de lagunas y lagos de agua caliente.

Esta idea fue pronto adoptada por un cierto número de autores de ciencia ficción en el baile continuo entre ciencia y ciencia ficción, en el cual la ciencia estimula a la ficción y la ficción a una nueva generación de científicos, un proceso que beneficia a ambos géneros. Pero, como paso siguiente en el baile, ahora ha quedado claro que sembrar Venus de microorganismos fotosintéticos especiales no funcionaría. Desde 1961 hemos descubierto que las nubes de Venus se componen de una solución de ácido sulfúrico que convierte la posibilidad de aplicar ingeniería genética en un reto todavía mayor. Sin embargo, tal circunstancia no constituye en sí misma un inconveniente definitivo. (Existen microorganismos que viven en soluciones concentradas de ácido sulfúrico.) El inconveniente definitivo es el siguiente: Yo pensaba en 1961 que la presión atmosférica en la superficie de Venus era de unos pocos barios, algo superior a la presión en la superficie de la Tierra. Hoy sabemos, en cambio, que es de 90 barios, de modo que, aunque el invento funcionara, el resultado sería una superficie enterrada bajo cientos de metros de fino grafito y una atmósfera compuesta de 65 barios de oxígeno molecular casi puro. Queda abierta la incógnita de si primero implosionaríamos bajo esa aplastante presión atmosférica o bien si antes nos encenderíamos de forma espontánea y seríamos pasto de las llamas en medio de ese exceso de oxígeno. Pero, mucho antes de que pudiera acumularse todo ese oxígeno, el grafito volvería a quemarse espontáneamente para convertirse en CO
2
, frustrando todo el proceso. En el mejor de los casos, un procedimiento de este tipo podría acarrear sólo la terraformación parcial de Venus.

Other books

Schooled in Murder by Zubro, Mark Richard
The Cannibal Within by Mirabello, Mark
Heaven in a Wildflower by Patricia Hagan
Strange Loyalties by William McIlvanney
Battle of Britain by Chris Priestley