Un punto azul palido (36 page)

Read Un punto azul palido Online

Authors: Carl Sagan

Tags: #Divulgación Científica

BOOK: Un punto azul palido
9.89Mb size Format: txt, pdf, ePub

No obstante, una luna que vive junto a un planeta no puede volver a formarse si ha sido pulverizada, pues las mareas gravitatorias del mismo lo impiden. Los escombros resultantes, una vez diseminados en el interior de los sistemas de anillos, pueden ser muy duraderos, al menos si lo comparamos con la duración estándar de una vida humana. Tal vez muchas de las pequeñas e indiscernibles lunas que hoy orbitan a los planetas gigantes evolucionarán un día hasta formar vastos y hermosos anillos.

Estas ideas se apoyan en la apariencia de gran número de satélites del sistema solar. Fobos, la luna interior de Marte, presenta un gran cráter denominado Stickney; Mimas, una luna interior de Saturno, posee también uno de grandes dimensiones llamado Herschel. Estos cráteres —al igual que los que posee nuestra propia Luna y los que se encuentran por todo el sistema solar— fueron producidos por colisiones. Un intruso choca contra un mundo más grande y provoca una inmensa explosión en el punto de impacto. Ésta excava un cráter en forma de ensaladera y el objeto más pequeño implicado en la colisión queda destruido. Si los intrusos que formaron los cráteres Stickney y Herschel hubieran sido solamente algo más grandes, habrían tenido energía suficiente para romper en pedazos Fobos y Mimas. Esas lunas escaparon por los pelos a las destructivas consecuencias de la bola cósmica de derribos. Muchas otras no tuvieron tanta suerte.

Cada vez que un mundo recibe un impacto, queda en el espacio un intruso menos; es algo así como un concurso de demolición a la escala del sistema solar, una guerra de desgaste. El mismo hecho de que se hayan producido muchas de estas colisiones significa que los pedazos de mundo errantes se han consumido en una cantidad elevada. Los que viajan en trayectorias circulares alrededor del Sol, los que no cruzan las órbitas de otros mundos, es poco probable que lleguen a chocar nunca contra un planeta. Pero los que siguen trayectorias muy elípticas, los que sí atraviesan las órbitas de otros planetas, tarde o temprano colisionarán o, tras escapar por los pelos a ese destino, serán eyectados gravitacionalmente fuera del sistema solar.

Se tiene prácticamente la certeza de que los planetas se acumularon a partir de pedazos de mundo que, a su vez, se habían condensado a partir de una gran nube plana de polvo y gas que rodeaba al Sol, el mismo tipo de nube que hoy se observa alrededor de estrellas jóvenes cercanas. Así pues, en la historia primitiva del sistema solar, antes de que las colisiones despejaran el panorama, tuvo que haber muchísimos más mundos de los que hoy podemos ver.

En realidad, tenemos pruebas inequívocas de ello delante de nuestras propias narices: si contamos los cuerpos intrusos en el espacio de nuestro vecindario, podemos estimar con qué frecuencia chocarán con la Luna. Supongamos muy modestamente que la población de intrusos nunca ha sido más pequeña de lo que es en la actualidad. Podemos entonces calcular cuántos cráteres debería haber en la Luna. El número que obtenemos resulta ser muy inferior al número de cráteres que, efectivamente, vislumbramos en las devastadas mesetas de la Luna. La inesperada profusión de cráteres sobre la Luna nos habla de una época primitiva en la que el sistema solar atravesaba un período de inusitada agitación, revolviéndose en la abundancia de mundos con trayectorias de colisión. Y ello tiene perfecto sentido, pues precisamente se formaron a partir de la agregación de trozos de mundo más pequeños, los cuales asimismo habían crecido a partir del polvo interestelar. Cuatro mil millones de años atrás, los impactos lunares eran cientos de veces más frecuentes que hoy; y 4500 millones de años atrás, cuando los planetas estaban todavía incompletos, las colisiones se producían quizá mil millones de veces más a menudo que en nuestra sosegada época actual.

El caos pudo haber sido mitigado por muchos más flamantes sistemas de anillos que los que adornan los planetas en la actualidad. Si éstos poseían en esa época pequeñas lunas, es posible que la Tierra, Marte y los demás planetas pequeños estuvieran provistos de anillos.

La explicación más satisfactoria en relación con el origen de nuestra propia Luna, basada en su composición química (revelada por las muestras que aportaron las misiones Apolo), sostiene que se formó hace casi 4500 millones de años, cuando un mundo del tamaño de Marte colisionó con la Tierra. Gran parte del manto rocoso de nuestro planeta quedó reducido a polvo y gas calientes, y salió disparado al espacio. Posteriormente, algunos de los escombros, en órbita alrededor de la Tierra, fueron reacumulándose gradualmente, átomo por átomo, roca por roca.
[33]
Si ese desconocido mundo causante del impacto hubiera sido solamente un poco más grande, el resultado habría sido la destrucción total de la Tierra. Puede que en otras épocas hubiera otros mundos en nuestro sistema solar —quizá incluso mundos con presencia de vida— que sufrieron el impacto de algún endemoniado objeto celeste, fueron demolidos por completo y no ha quedado de ellos el menor indicio.

Por consiguiente, la imagen del sistema solar primigenio que paulatinamente va dibujándose, en nada se parece a una solemne procesión de eventos destinados a formar la Tierra. En su lugar, parece que nuestro planeta se originó y sobrevivió por una afortunada casualidad, en medio de increíbles escenas de violencia. Nuestro mundo no parece haber sido esculpido por un maestro en el arte. Una vez más, no existen indicios de un universo hecho para nosotros.

L
A PROVISIÓN CADA VEZ MENOR
de pedazos de mundo recibe hoy en día distintas denominaciones: asteroides, cometas, lunas pequeñas. Pero se trata de categorías arbitrarias, los auténticos trozos de mundo son capaces de quebrar estas clasificaciones concebidas por el hombre. Algunos asteroides (la palabra significa «parecidos a las estrellas», aunque desde luego no lo son) son rocosos, otros metálicos y aún hay otros ricos en materia orgánica. Ninguno supera los mil kilómetros de diámetro. Se alojan principalmente en un cinturón entre las órbitas de Marte y Júpiter. Los astrónomos pensaban en su día que los asteroides del «cinturón principal» eran los restos de un mundo demolido, pero, tal como he descrito, hoy parece estar más en boga otra idea: el sistema solar estuvo una vez lleno de mundos similares a los asteroides, algunos de los cuales formaron los planetas. Únicamente en el cinturón de asteroides, cerca de Júpiter, las mareas gravitatorias de este planeta más masivo impidieron que los escombros adyacentes se unieran para formar un mundo nuevo. Los asteroides, en lugar de representar a un mundo que alguna vez existió, parecen ser los bloques constructivos de un mundo destinado a no existir nunca.

De tamaño inferior a un kilómetro puede que existan varios millones de asteroides, pero en ese enorme volumen de espacio interplanetario, incluso esa cantidad es demasiado insignificante para plantear un peligro serio a las naves espaciales de camino hacia el sistema solar exterior. Los primeros asteroides del cinturón principal, Gaspra e Ida, fueron fotografiados, en 1991 y 1993 respectivamente, por la nave
Galileo
en su sinuoso viaje a Júpiter.

Los asteroides del cinturón principal suelen, en su mayor parte, quedarse en casa. Para investigarlos, estamos obligados a ir a visitarlos, tal como hizo
Galileo.
Los cometas, por su parte, acuden en ocasiones a hacernos una visita, como hizo el cometa Halley muy recientemente, en 1910 y 1986. Los cometas están compuestos básicamente de hielo, además de roca y material orgánico en cantidades mucho menores. Cuando se calientan, el hielo se vaporiza formando las largas y hermosas colas, desplazadas hacia atrás por el viento solar y la presión de la luz del Sol. Tras pasar varias veces junto al Sol, el hielo se ha evaporado por completo, dejando en ocasiones tras de sí un mundo muerto de roca y materia orgánica. Otras veces las partículas que quedan, habiendo desaparecido el hielo que las mantenía unidas, se esparcen por la órbita del cometa, generando un sendero de escombros alrededor del Sol.

Cada vez que un fragmento de masa cometaria del tamaño de un grano de arena penetra en la atmósfera de la Tierra a gran velocidad, se quema, produciendo una momentánea estela de luz que los observadores terrestres denominan meteorito esporádico o bien «estrella fugaz». Algunos cometas que están desintegrándose poseen órbitas que cruzan la de la Tierra. Por ello, cada año, la Tierra, en su permanente circunnavegación del Sol, se sumerge también en cinturones de escombros cometarios orbitales. Tenemos entonces ocasión de presenciar una lluvia de meteoros, o incluso una tormenta de meteoros, durante la cual los cielos resplandecen con las partes del cuerpo de un cometa. Por ejemplo, la lluvia de meteoros Perseidas, que puede observarse cada año hacia el 12 de agosto, procede de un cometa moribundo llamado Swift-Tuttle. Pero la belleza de una lluvia de meteoros no debe llamarnos a engaño: hay un continuo que conecta a esos resplandecientes visitantes de nuestros cielos nocturnos con la destrucción de mundos.

Algunos asteroides sueltan de vez en cuando pequeñas emanaciones de gas o incluso forman temporalmente una cola, lo cual sugiere que se hallan en fase de transición entre la condición de cometa y asteroide. Algunas lunas pequeñas que giran alrededor de los planetas son probablemente cometas o asteroides capturados; las lunas de Marte y los satélites exteriores de Júpiter pueden pertenecer a esta categoría.

La gravedad se encarga de pulir cualquier cosa que sobresalga demasiado. Pero solamente en cuerpos muy grandes resulta suficiente como para provocar el colapso de montañas y otras proyecciones bajo su propio peso, redondeando los contornos del mundo en cuestión. Y verdaderamente, cuando contemplamos sus formas, casi siempre nos encontramos con que los pedazos de mundo de pequeñas dimensiones son deformes, irregulares, en forma de patata.

H
AY ASTRÓNOMOS CUYA IDEA
de lo que es pasar un buen rato consiste en permanecer en vela hasta el amanecer de una fría noche sin luna, tomando fotos del cielo, el mismo cielo que fotografiaron el año anterior... y también el anterior a ése. «Si ya les había salido bien la última vez, ¿por qué lo repiten?», podríamos preguntarnos. La respuesta es que el cielo cambia. En cualquier año dado puede haber cuerpos celestes completamente desconocidos, nunca vistos hasta entonces, que se acerquen a la Tierra, y que pueden ser espiados por esos pertinaces observadores.

El
25
de marzo de 1993, un grupo de cazadores de cometas y asteroides, contemplando la cosecha fotográfica de una noche intermitentemente nubosa en el monte Palomar, en California, descubrieron en la película una pálida mancha alargada. Se encontraba cerca de un objeto muy brillante en el cielo, el planeta Júpiter. Carolyn y Eugene Shoemaker y David Levy pidieron entonces a otros observadores que le echaran un vistazo. La mancha resultó ser algo asombroso: unos veinte pequeños objetos brillantes orbitando alrededor de Júpiter, uno detrás de otro, como perlas en un collar. Colectivamente reciben el nombre de cometa Shoemaker-Levy 9 (ésta es la novena ocasión en que estos colaboradores descubren juntos un cometa periódico).

No obstante, llamar cometa a esos objetos puede inducir a equívoco. Había todo un enjambre de los mismos, probablemente los fragmentados restos de un solo cometa que hasta ahora no ha sido descubierto. Orbitó en silencio alrededor del Sol durante cuatro mil millones de años antes de pasar demasiado cerca de Júpiter y ser capturado, posiblemente unas cuantas décadas atrás, por la gravedad del planeta más grande del sistema solar. El 7 de julio de 1992 fue despedazado por las mareas gravitatorias del mismo.

Debemos conceder que la cara interior de un cometa de estas características sería atraída hacia Júpiter con algo más de fuerza que la exterior, pues lógicamente la primera se halla más cercana al planeta que la segunda. La diferencia del tirón es ciertamente pequeña. Nuestros pies se encuentran algo más cerca del centro de la Tierra que nuestra cabeza, pero ello no es motivo para que la gravedad de la Tierra nos rompa en pedazos. Para que la marea ocasionara tal grado de destrucción, el cometa original debía de estar muy débilmente cohesionado. Pensamos que antes de la fragmentación era una masa muy poco compacta de hielo, roca y materia orgánica, de unos diez kilómetros de diámetro, aproximadamente.

La órbita de este cometa destruido pudo determinarse con gran precisión. Entre el 16 y el 22 de julio de 1994 todos los fragmentos cometarios, uno tras otro, colisionaron con Júpiter. Las piezas más grandes tenían al parecer unos pocos kilómetros de diámetro. Sus impactos contra dicho planeta fueron espectaculares.

Nadie sabía de antemano qué efectos iban a tener sobre la atmósfera y las nubes de Júpiter esos múltiples impactos. Tal vez los fragmentos cometarios, rodeados de halos de polvo, eran mucho más pequeños de lo que parecían. O quizá ni siquiera eran cuerpos cohesionados, sino que presentaban una mínima consistencia, algo así como un montón de gravilla con todas sus partículas viajando juntas por el espacio en órbitas prácticamente idénticas. Si alguna de estas posibilidades era cierta, Júpiter se tragaría los fragmentos sin dejar rastro. Otros astrónomos defendían la opinión de que, como mínimo, iban a formarse resplandecientes bolas de fuego y penachos gigantescos cuando los fragmentos cometarios se sumergieran dentro de la atmósfera del planeta. Y aun otro grupo sugería que la densa nube de finas partículas que acompañaba los fragmentos del cometa Shoemaker-Levy 9 hacia el planeta Júpiter destruiría su magnetosfera o bien formaría un nuevo anillo.

Se calcula que un cometa de estas dimensiones debe impactar con Júpiter solamente una vez cada mil años. No se trataba del acontecimiento astronómico de una vida, sino de una docena. Desde la invención del telescopio no ha ocurrido nada de tal envergadura. De modo que, a mediados de julio de 1994, en un esfuerzo científico internacional muy bien coordinado, telescopios de toda la Tierra y también del espacio enfocaron Júpiter.

Los astrónomos tardaron más de un año en prepararse. Se efectuó una estimación de la trayectoria de los fragmentos en su órbita alrededor de Júpiter y se descubrió que todos ellos iban a chocar con el planeta. Se refinaron también las predicciones en cuanto al momento en que el evento debía producirse. La decepción fue grande cuando los cálculos revelaron que todos los impactos tendrían lugar en el hemisferio nocturno de Júpiter, la cara invisible desde la Tierra (aunque accesible a las naves
Galileo
y
Voyager
en el sistema solar exterior). Felizmente, no obstante, todas las colisiones se producirían sólo pocos minutos antes del amanecer joviano, antes de que la zona impactada fuera trasladada por la rotación de Júpiter hasta la línea visual desde la Tierra.

Other books

The Triggerman Dance by T. JEFFERSON PARKER
The red church by Scott Nicholson
311 Pelican Court by Debbie Macomber
Happy, Happy, Happy by Phil Robertson
Dragon's Flame by Jory Strong
Learning to Soar by Bebe Balocca
Snowflake Bay by Donna Kauffman
A Russian Diary by Anna Politkovskaya