Read Un punto azul palido Online

Authors: Carl Sagan

Tags: #Divulgación Científica

Un punto azul palido (38 page)

BOOK: Un punto azul palido
6.33Mb size Format: txt, pdf, ePub
ads

L
A COLISIÓN DEL CRETACEO-TERCIARIO
(o colisiones, ya que pudo haber más de una) ejemplifica el peligro que representan los cometas y asteroides. A consecuencia de dicho impacto un fuego de dimensiones mundiales redujo a cenizas la vegetación por todo el planeta; una nube de polvo estratosférica oscureció el cielo, hasta tal punto que las plantas supervivientes tuvieron dificultades para seguir viviendo de la fotosíntesis; las temperaturas se tornaron gélidas en toda la Tierra, que se vio afectada por lluvias torrenciales de ácidos cáusticos, por una reducción masiva de la capa de ozono y, para colmo, cuando nuestro mundo se había curado ya de tantas agresiones, sufrió un prolongado calentamiento a causa del efecto invernadero (pues, al parecer, el impacto principal volatilizó una profunda capa de carbonatos sedimentarios, liberando al aire enormes cantidades de anhídrido carbónico). No fue pues una catástrofe individual, sino un desfile de catástrofes, una concatenación de horrores. Los organismos que habían quedado debilitados por uno de los desastres sucumbieron al siguiente. No sabemos si nuestra civilización actual sobreviviría a una colisión de este tipo, aunque fuera considerablemente menos enérgica.

Al existir muchos más asteroides pequeños que grandes, por lo general las colisiones con la Tierra serán causadas por los primeros. Pero cuanto más tiempo estemos dispuestos a esperar, más devastador puede ser el impacto. Por término medio, una vez cada pocos cientos de años la Tierra es alcanzada por un objeto de unos setenta metros de diámetro; la energía liberada a consecuencia de la colisión equivale a la explosión del arma nuclear más potente que nunca se haya lanzado. Cada diez mil años nos golpea un objeto de doscientos metros, que podría provocar serias consecuencias climáticas regionales, y cada millón de años se produce el impacto de un cuerpo de más de dos kilómetros de diámetro, equivalente a casi un millón de megatones de TNT, una explosión que desencadenaría una catástrofe global, eliminando a una porción significativa de la especie humana (a menos que se tomaran precauciones sin precedentes). Un millón de megatones de TNT corresponden a cien veces la potencia explosiva de todas las armas nucleares que hay sobre el planeta, detonadas de forma simultánea. Y, dejando pequeña incluso a esa hecatombe, dentro de unos cien millones de años cabe esperar un suceso similar al del cretáceo-terciario, el impacto de un mundo de diez kilómetros de diámetro o aun mayor. La potencia destructiva latente en un asteroide cercano de grandes dimensiones pone en ridículo a cualquier artefacto que pueda inventar la especie humana. Como demostraron por primera vez el científico planetario americano Christopher Chyba y sus colaboradores, los asteroides o cometas pequeños, de algunas decenas de metros de diámetro, se rompen y carbonizan al penetrar en nuestra atmósfera. Comparativamente, la alcanzan con relativa frecuencia, pero no producen daños significativos. Tenemos alguna idea de con qué asiduidad penetran en la atmósfera de la Tierra, gracias a una serie de datos no clasificados del Departamento de Defensa, obtenidos por satélites especiales que controlan permanentemente nuestro planeta, en busca de explosiones nucleares clandestinas. Parece que en el transcurso de los últimos veinte años se han producido impactos de cientos de pequeños fragmentos de mundo (y al menos uno de un cuerpo más grande). No causaron daños, pero debemos estar muy seguros de que somos capaces de distinguir entre la colisión de un pequeño cometa o asteroide y una explosión nuclear en la atmósfera.

Los impactos amenazadores para nuestra civilización requieren cuerpos celestes de varios cientos de metros de diámetro, o más (cien metros viene a ser la longitud de un campo de fútbol). Estas colisiones se producen aproximadamente una vez cada doscientos mil años. Nuestra civilización tiene solamente unos diez mil años de antigüedad, de modo que no hay razón para que conservemos en nuestra memoria institucional el último impacto de esas características. Y lo cierto es que no lo tenemos registrado.

La sucesión de violentas explosiones que provocó sobre Júpiter el cometa Shoemaker-Levy 9 en julio de 1994 nos recuerda que esa clase de colisiones ocurren realmente en nuestro tiempo, y que el impacto de un cuerpo de unos pocos kilómetros de diámetro puede diseminar escombros en un área tan grande como la Tierra. Fue una especie de premonición.

La misma semana del impacto del Shoemaker-Levy, el Comité para la Ciencia y para el Espacio de la Cámara de Representantes de Estados Unidos elaboró un proyecto de legislación que requiere a la NASA, «en coordinación con el Departamento de Defensa y las agencias espaciales de otros países», para que identifique y determine las características orbitales de todos los «cometas y asteroides de más de un kilómetro de diámetro» que se aproximen a la Tierra. El trabajo deberá estar concluido para el año 2005. Muchos científicos planetarios ya habían reivindicado anteriormente un programa de investigación de esas características. Pero fue necesario escuchar el grito agónico de un cometa para que por fin se llevara a la práctica.

Repartidos en el tiempo, los peligros de la colisión de asteroides no parecen demasiado preocupantes. Pero si se produjera un impacto de grandes proporciones ocasionaría una catástrofe sin precedentes para la Humanidad. Aproximadamente, existe una posibilidad entre dos mil de que se dé una colisión de esa envergadura durante la vida de un recién nacido actual. La mayoría de nosotros rehusaríamos volar en avión si las posibilidades de accidente afectaran a uno de cada dos mil vuelos. (En realidad, en vuelos comerciales, la posibilidad es una entre dos millones. Y aun así, son muchos los que consideran esa proporción suficiente como para preocuparse, o incluso para contratar una póliza de seguros.) Cuando nuestra vida está en juego, a menudo cambiamos de comportamiento para procurarnos unas circunstancias más favorables. Y entre los que no lo hacen se observa una mayor tendencia a que no se encuentren ya en este mundo.

Tal vez sería recomendable ir practicando la cuestión de cómo llegar a esos pedazos de mundo y apartarlos de sus órbitas, por si algún día se presentara la necesidad de hacerlo. A pesar de lo que dijera Melville, quedan todavía sueltas algunas de las fichas de la creación, y es evidente que hay que hacer algo al respecto. Siguiendo caminos paralelos y sólo levemente interconectados, la comunidad de la ciencia planetaria y los laboratorios norteamericanos y rusos de armas nucleares, conscientes de los escenarios antes descritos, han venido planteándose las siguientes cuestiones: cómo inspeccionar todos los objetos interplanetarios de grandes dimensiones cercanos a la Tierra, cómo caracterizar su naturaleza física y química, cómo predecir cuáles podrían encontrarse, en un futuro, en una trayectoria de colisión con la Tierra y, finalmente, cómo evitar que se produzca el impacto.

El pionero ruso de los vuelos espaciales Konstantin Tsiolkovsky sostuvo hace un siglo que debía de haber cuerpos de un tamaño intermedio entre los grandes asteroides observados y los fragmentos de asteroide —los meteoritos— que ocasionalmente se precipitan sobre la Tierra. En sus escritos apuntó la posibilidad de vivir en asteroides pequeños del espacio interplanetario. Él no contemplaba sus posibles aplicaciones militares. No obstante, a principios de los años ochenta, a algunos miembros de los círculos armamentísticos norteamericanos se les ocurrió que los soviets podían estar pensando en emplear asteroides cercanos a la Tierra como proyectiles de impacto; el presunto plan fue bautizado como «el Martillo de Iván». Había que tomar medidas preventivas de inmediato. Al mismo tiempo, se sugirió que quizá no fuera mala idea que Estados Unidos aprendiera también cómo utilizar pequeños mundos a modo de armas. La Organización de Defensa mediante Misiles Balísticos del Departamento de Defensa, sucesora de la oficina de la «Guerra de las Galaxias» de los ochenta, lanzó una innovadora nave con el nombre de
Clementine
a fin de que orbitara la Luna y se acercara al asteroide Geographos. (Tras completar un exhaustivo reconocimiento de la Luna, en mayo de 1994, la nave falló antes de poder alcanzar Geographos.)

En principio, cabe la posibilidad de hacerlo mediante motores de cohetes grandes, impactos por proyectil o equipando al asteroide con paneles reflectores gigantes y empujándolo a fuerza de luz solar o con potentes haces de láser desde la Tierra. No obstante, con la tecnología que en este momento tenemos a nuestro alcance, solamente hay dos maneras. La primera consistiría en que uno o más proyectiles nucleares de gran potencia hicieran estallar el asteroide o cometa en pedazos, que se desintegrarían y atomizarían al penetrar en la atmósfera de la Tierra. Si el pedazo de mundo ofensor sólo estuviera débilmente cohesionado, quizá unos pocos cientos de megatones bastarían. Como teóricamente no hay un límite superior para la potencia explosiva de un arma termonuclear, parece que en los laboratorios de fabricación de armas hay quien considera que hacer bombas aún más potentes no solamente constituye un desafío excitante, sino también un método para hacer cambiar de talante a los engorrosos defensores del medio ambiente, al conseguir que las armas nucleares ocupen un puesto en el carro de los abanderados del lema «Salvemos la Tierra».
[35]

Otra aproximación al problema, que se discute con mayor seriedad, resulta menos dramática, aunque contribuye igualmente a mantener el
establishment
armamentístico, y se concreta en un plan para alterar la órbita de cualquier cuerpo errante haciendo explotar armas nucleares en sus cercanías. Las explosiones (por lo general, en el punto más cercano del asteroide con el Sol) van encaminadas a desviarlo de la Tierra.

Una ráfaga de proyectiles nucleares de baja potencia, proporcionando cada uno un pequeño empujón en la dirección deseada, sería suficiente para desviar un asteroide de tamaño medio, recibiéndose el aviso con unas pocas semanas de antelación. El Método ofrece también, o al menos eso se espera, una solución para hacer frente a un cometa de largo periodo detectado de forma repentina en una trayectoria de inminente colisión con la Tierra: el cometa sería interceptado mediante un asteroide pequeño. (No hace falta decir que este juego de billar celeste resulta incluso más difícil e incierto —y por ello mucho menos práctico en un futuro próximo— que el acorralamiento, con meses o incluso años por delante, de un asteroide en una órbita conocida y que haga gala de buenos modales.)

Desconocemos los efectos que puede tener sobre un asteroide una explosión nuclear adyacente. La respuesta puede variar de unos a otros. Algunos pequeños mundos pueden ser muy compactos, mientras que otros constituyen poco más que pilas de gravilla con gravedad propia. Si una explosión quiebra, pongamos por caso, un asteroide de diez kilómetros en cientos de fragmentos de un kilómetro, la posibilidad de que al menos uno de ellos impacte con la Tierra se verá probablemente incrementada, y el carácter apocalíptico de las consecuencias no quedará atenuado. Por otra parte, si la explosión descompone el asteroide en multitud de objetos de cien metros de diámetro o menos, puede que todos ellos se desintegren como meteoritos gigantes al penetrar en la atmósfera de nuestro planeta. En ese caso causarían pocos daños por impacto. No obstante, aunque el asteroide resultara completamente pulverizado, la capa de polvo que se originaría a gran altura podría ser tan opaca como para bloquear la luz solar e inducir un cambio climático. Por el momento, desconocemos sus posibles consecuencias.

Hasta aquí se ha ofrecido una visión que coloca docenas o cientos de misiles nucleares a punto para hacer frente a asteroides o cometas amenazadores. Aun siendo prematura en esta aplicación concreta, esta visión resulta muy familiar; solamente ha cambiado el enemigo. También parece muy peligrosa.

El problema, según sugerimos Steven Ostro, del JPL, y yo, es que si somos capaces de desviar de forma fiable un cuerpo interplanetario amenazador para que no colisione con la Tierra, también podemos desviar con garantías un cuerpo inofensivo a fin de que impacte contra la Tierra. Supongamos que dispusiéramos de un inventario completo, con sus órbitas incluidas, de los trescientos mil asteroides cercanos que se estima tienen más de cien metros, cada uno de ellos lo suficientemente grande como para producir consecuencias serias en caso de colisión con nuestro planeta. Además, imaginemos que también obra en nuestro poder la lista de un número enorme de asteroides inofensivos, cuyas órbitas son susceptibles de ser alteradas mediante cabezas nucleares con el objetivo de que colisionen rápidamente con la Tierra.

Continuemos suponiendo que centramos nuestra atención en los aproximadamente dos mil asteroides cercanos de un kilómetro o más de diámetro, es decir, los que presentan más probabilidades de causar una catástrofe global. En la actualidad, con sólo unos cien de esos objetos catalogados, nos llevaría cerca de un siglo seleccionar uno fácilmente desviable hacia la Tierra y alterar su órbita. Creemos que hemos encontrado uno, un asteroide todavía sin nombre, hasta ahora conocido como 1991 OA.

¿Cómo deberíamos llamar a ese mundo? Parece inadecuado bautizarlo con los nombres de las parcas, las furias o de Némesis, pues se halla enteramente en nuestras manos que haga o no blanco en la Tierra. Si no lo tocamos, errará el tiro. Si lo empujamos de forma precisa y certera, dará en el blanco. Quizá deberíamos llamarlo la «bola negra».

En el año 2070, este mundo, de cerca de un kilómetro de diámetro, se acercará a unos 4,5 millones de kilómetros de la órbita terrestre, solamente quince veces la distancia que nos separa de la Luna. Para desviar el 1991 OA de forma que impacte con la Tierra solamente es necesario detonar correctamente el equivalente a sesenta megatones de TNT, esto es, la cantidad correspondiente a un número habitualmente disponible de cabezas nucleares.

Ahora imaginemos que llega un momento, dentro de unas décadas, en que todos estos asteroides cercanos están debidamente inventariados con sus respectivas órbitas. Entonces, tal como hemos demostrado Alan Harris, del JPL, Greg Canavan, del laboratorio Nacional de Los Alamos, Ostro y yo mismo, puede que sólo nos lleve un año seleccionar un objeto adecuado, alterar su órbita y mandarlo a chocar contra la Tierra produciendo efectos cataclísmicos.

Toda la tecnología que requeriría una empresa así —grandes telescopios ópticos, detectores sensibles, sistemas de propulsión de cohetes capaces de poner en órbita unas pocas toneladas de carga y de efectuar un encuentro preciso en el espacio cercano, y armas termonucleares— ya existe en la actualidad. Y cabe esperar mejoras en todos esos factores, exceptuando quizá el último de ellos. Si no nos andamos con tiento, muchas naciones pueden disponer de esas capacidades en las próximas décadas. ¿Qué clase de mundo habremos logrado entonces?

BOOK: Un punto azul palido
6.33Mb size Format: txt, pdf, ePub
ads

Other books

Once Around by Bretton, Barbara
Jack Hammer by Tabatha Vargo, Melissa Andrea
Messenger by Lois Lowry
Ancient Prophecy by Richard S. Tuttle, Richard S. Tuttle